
AUTOMATA, REPRESENTATIONS, AND PROOFS

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

James Michael Worthington

August 2009

c© 2009 James Michael Worthington

ALL RIGHTS RESERVED

AUTOMATA, REPRESENTATIONS, AND PROOFS

James Michael Worthington, Ph.D.

Cornell University 2009

In this dissertation, we study automata, languages, and functions between

automata which preserve the language accepted. We examine them from the

perspectives of representation theory, category theory, and proof theory. A cen-

tral theme is that these perspectives interact in many useful, interesting ways.

Let M be a monoid in a monoidal category. We view automata as objects of

a category of representations of M , equipped with a start state and an observa-

tion function. If M is a monoid in Set, this view yields a generalization of the

standard notion of a deterministic automaton. In this generalization, the inputs

to an automaton are elements of an arbitrary monoid. Omitting the requirement

that automata have start states yields categories with final objects. These final

objects can be used to minimize deterministic automata.

Let K be a commutative semiring. To express nondeterminism in our frame-

work, we must first take an algebraic detour and show that the category of

K-semimodules and K-linear maps is a monoidal category. We then define

K-algebras as monoids in this category. We call the corresponding automata

K-linear automata. These automata are related to, but distinct from, weighted

automata. A K-linear automaton with input K-algebra A defines an element of

Lin(A,K). In certain cases, elements of Lin(A,K) correspond to K-linear exten-

sions of formal power series.

In the K-linear case, there is an addition defined on both the states and the

inputs. Addition of states can be used to represent nondeterminism. Addi-

tion of inputs is needed to define comultiplication. Comultiplication defines a K-

algebra structure on Lin(A,K). That is, comultiplication of inputs corresponds

to multiplication of “languages”. If multiplication and comultiplication satisfy

certain “compatibility conditions”, the input elements form a structure known

as a K-bialgebra. Part of this dissertation is the development of the numerous

parallels between the theory of bialgebras and the theory of automata and for-

mal languages. These parallels demonstrate that comultiplication is a “hidden

parameter” in many standard constructions involving automata and formal lan-

guages.

In certain cases, a category of K-linear automata is related to a category of

(generalized) deterministic automata by an adjunction. We show that the stan-

dard subset construction used to determinize automata can be generalized as

a forgetful functor; determinization is essentially forgetting the K-semimodule

structure on the states of a K-linear automaton.

Using this adjunction, we can construct a sequence ofK-linear automata and

morphisms thereof which witnesses the fact that two K-linear automata define

the same element of Lin(A,K). With appropriate restrictions, this witness can

be efficiently verified. Furthermore, we can use this witnessing sequence as the

basis for a proof system for the equational theory of Kleene algebra. We also show

that such proofs can be generated by a PSPACE transducer.

Finally, we discuss alternating automata in relation to our framework, and

provide a determinizing functor.

BIOGRAPHICAL SKETCH

James was born on June 5th, 1979 and grew up in Chenango Bridge, which is

a small suburb of Binghamton, NY. He attended Chenango Valley High School

and then earned a Bachelor of Science in Mathematics at SUNY Binghamton

(which was later renamed “Binghamton University”). The next stop was Win-

terthur, Switzerland, to teach English at the Kantonsschule Büelrain. In the fol-

lowing year, he returned to upstate New York and enrolled in Cornell Univer-

sity to pursue a Ph.D in mathematics. After two years, he decided to study

computer science as well, for good measure.

iii

For Jess and Beth.

iv

ACKNOWLEDGEMENTS

I would like to thank:

• My advisor, Dexter Kozen, for his support, direction, introducing me to

the problem of proving automata equivalent, and the many valuable sug-

gestions he made for improving this dissertation. I would also like to ac-

knowledge his truly excellent textbooks, from which I have learned a great

deal.

• My “second advisor”, Anil Nerode, for his encouragement, guidance,

many informative conversations, and his fruitful suggestion that I look

into Hopf Algebras.

• My third committee member, Richard Shore, for many fascinating classes,

organizing top-notch logic seminars, and toleration of my non-standard

interpretation of “homework due date”.

• Maria Terrell, for her advice and encouragement, to me and to all the grad-

uate students in the math department.

• John Hopcroft, for his support and for being a first-class teaching role

model.

• John Meier, for running an REU program which led me to study mathe-

matics at the graduate level.

• My undergraduate professors Matt Brin, Benjamin Brewster, Ross Ge-

oghegan, Fernando Guzman, and Luise-Charlotte Kappe, for introducing

me to theoretical mathematics.

• Mia Minnes, for her encouragement.

• My family, in particular my sisters Jessica and Bethany, for their support

during my graduate studies.

v

• Krystal, for her love and downright superhuman patience.

• Mauricio and Florencia, for their friendship and hospitality.

• The friends I made while at Cornell, in particular, Becky, Jay, Mike, Paul,

Sarah, and Tim.

• Friends from before, in particular, Cory, Matt, Nick, and Scott.

• The anonymous reviewers of RelMiCS/AKA ’08 and LFCS ’09, who made

many valuable suggestions on various precursors of this dissertation.

• The “delivry” staff of Jade Garden restaurant, who in a very real, biochem-

ical sense, made this dissertation possible.

This work was supported in part by NSF grant CCF-0635028.

vi

TABLE OF CONTENTS

Biographical Sketch . iii
Dedication . iv
Acknowledgements . v
Table of Contents . vii
List of Figures . ix

1 Introduction 1
1.1 Automata as Pointed, Observable Representations 1
1.2 The Categorical Perspective . 4
1.3 Proofs and Complexity . 5
1.4 Related and Motivating Work . 6
1.5 Notes on Terminology . 7

2 Background and Definitions 9
2.1 Monoids and Deterministic Automata 9
2.2 Monoidal Categories . 13
2.3 Categories and Deterministic Automata 19
2.4 Proofs and Complexity . 23

3 Semirings, Semimodules, and Weighted Automata 25
3.1 Basic Definitions . 25
3.2 Free K-semimodules and Weighted Automata 28
3.3 Dual Semimodules . 31

4 Tensor Products over Commutative Semirings 35
4.1 Constructing the Tensor Product 35
4.2 Properties of the Tensor Product 38
4.3 Alternative Constructions . 48

5 Monoids, Comonoids, and Bimonoids 51
5.1 Monoids and K-algebras . 51
5.2 Comonoids and K-coalgebras . 54
5.3 Bimonoids and K-bialgebras . 57

6 Representations, Automata, and Languages 62
6.1 K-algebra Representations and K-linear Automata 62
6.2 K-coalgebras and Formal Languages 68
6.3 K-bialgebras, Automata, and Languages 71

7 Completeness 78
7.1 Why Determinize? . 78
7.2 Determinization as Forgetful Functor 82
7.3 Free K-linear Automata . 85

vii

7.4 Adjunctions Between Categories of Automata 86
7.5 Completeness . 88

8 Complexity and Kleene Algebra 91
8.1 Kleene Algebra . 91
8.2 Automata, Actions, and KA Terms 93

8.2.1 KA Automata to K-linear Automata 95
8.2.2 K-linear Automata to KA Automata 97

8.3 The Proof System . 98
8.4 Generating Proofs . 100

8.4.1 Stage 1: KA term to Automaton 102
8.4.2 Stage 2: Automaton to λ-free Automaton 103
8.4.3 Stage 3: λ-free Automaton to Deterministic Automaton . . 104
8.4.4 Stage 4: Deterministic Automaton to Minimal Determin-

istic Automaton . 107
8.4.5 Stage 5: Deterministic Automaton for β Disimilar to Min-

imal Automaton for α . 109

9 Alternating Automata 110
9.1 Alternating Automata . 110
9.2 Determinization . 113

10 Conclusion and Future Work 115
10.1 Summary and Concluding Remarks 115
10.2 Future Work . 116

10.2.1 Bialgebras and Hopf Algebras 117
10.2.2 Proof Complexity . 118
10.2.3 Other Automata and Other Inputs 118

Bibliography 119

viii

LIST OF FIGURES

6.1 A Nondeterministic automaton to encode. 64
6.2 Nondeterministic automata. 74

ix

CHAPTER 1

INTRODUCTION

In this dissertation, we study various types of automata and their morphisms.

We examine them from the perspectives of representation theory, category the-

ory, and proof theory. These perspectives are not mutually exclusive; in fact,

they interact in many interesting ways.

1.1 Automata as Pointed, Observable Representations

The algebraic perspective can be summarized as follows: an automaton is a

pointed, observable representation of an algebraic structure. The elements of

this structure are the inputs to the automaton and the elements of the repre-

sentation are the states of the automaton. “Pointed” refers to the fact that the

representation has a distinguished element, which we treat as the start state of

the automaton. “Observable” means that there is a function from the represen-

tation to some (possibly structured) set, for example, the set {accept, reject}. We

are interested in the relationships between automata, languages, and various

operations on the set of inputs. Additionally, we study maps between automata

which respect the relevant structures.

The simplest algebraic structures we consider are monoids, which act on

sets. We define a deterministic automaton as a set S (the state set) along with

a distinguished s ∈ S (the start state), an action of a monoid M on S, and an

observation function S → O, where O is an arbitrary set. In the literature, it is

common to assume that M is a free, finitely generated monoid.

1

A deterministic automaton defines a function M → O, which we call the lan-

guage accepted by the automaton. Normally, “language” refers to a set of words.

Such a set can be identified with its characteristic function; we generalize and

use the term “language” for any function defined by an automaton. Some au-

thors use the word behavior in this case. Morphisms of deterministic automata

are functions between the underlying state sets which commute with the actions

of M , subject to conditions on the start states and observation functions. These

conditions guarantee that the domain automaton and the codomain automaton

accept the same language.

Transitions in an automaton represent multiplication in a monoid. Other-

wise, deterministic automata are somewhat limited algebraically, because the

states and observations are just elements of unstructured sets. This leads us

to K-linear automata, whose states are elements of a semimodule and whose

observations are semiring-valued (see Section 1.4 below for a discussion of

the relation between K-linear automata and weighted automata). Many con-

structions involving K-linear automata rely on these semiring and semimodule

structures.

One goal of this dissertation is to examine the similarities between the theory

of K-linear automata and the theory of bialgebras. To express K-linear automata

bialgebraically, we must define the tensor product of semimodules over a com-

mutative semiring. This is the subject of Chapter 4. Using this tensor product,

we define K-algebras, K-coalgebras, and K-bialgebras for an arbitrary commu-

tative semiring K. A K-algebra is a monoid in the category of K-semimodules;

an example of a K-algebra is the set of polynomials in noncommuting variables

{x1, x2, · · · , xn} with coefficients in K. A K-coalgebra C is the categorical dual

2

of a K-algebra. It has a coassociative operation ∆ : C → C ⊗ C, called comulti-

plication. Comultiplication can be thought of as a rule for splitting elements of C

into two parts. A standard result is that theK-coalgebra structure onC defines a

K-algebra structure on the dual semimodule of C. Finally, a K-bialgebra is both

a K-algebra and a K-coalgebra, satisfying compatibility conditions between the

two structures.

We can now give a rough definition of aK-linear automaton as a pointed, ob-

servable representation of a K-algebra. States of a K-linear automaton are ele-

ments of aK-semimodule. AllowingK-linear combinations of states is one way

of expressing nondeterminism; K-linear combinations of inputs are a natural

counterpart to this. Multiplication of the inputs corresponds to transition struc-

tures of automata. Maps between automata which commute with the transitions

correspond to certain maps between representations of a K-algebra. When K is

a commutative ring, these maps are known in the literature as linear intertwiners.

A K-coalgebra defines a K-algebra on the dual of the underlying K-

semimodule; elements of the dual semimodule can be thought of (in certain

cases) as K-linear extensions of formal power series. Intuitively, if we know

how to split inputs (using ∆), we know how to multiply languages. For exam-

ple, for an appropriate K-semimodule, there is a comultiplication which corre-

sponds to language intersection, and a comultiplication which corresponds to

the shuffle product of languages. Comultiplication requires the inputs to be el-

ements of a K-semimodule; this is another justification for endowing the set of

inputs with a K-semimodule structure.

If the K-algebra and K-coalgebra structure on inputs interact nicely, then

we have a K-bialgebra. In this case, a construction from the theory of bialge-

3

bras describes how to run two K-linear automata in parallel. Intuitively, if you

can split inputs toK-linear automata, you can multiplyK-linear automata: con-

struct a machine which splits the inputs and then feeds the resulting parts to the

respective K-linear automata.

While the relation betweenK-linear automata andK-bialgebras requires the

underlying semiring to be commutative, this restriction is not needed for the

completeness proof in Chapter 7.

Finally, in Chapter 9, we discuss alternating automata, which are in some

sense a combination of deterministic and K-linear automata.

1.2 The Categorical Perspective

We often consider automata as objects in a category. The arrows are maps be-

tween automata which preserve the language accepted.

One advantage of this perspective is that it allows succinct expression of sim-

ilarities between different types of automata. In Chapter 2, we recall the defini-

tion of a monoidal category and show how to interpret deterministic automata

as objects in the category of representations of a monoid in Set. After develop-

ing the theory of K-algebras, we can apply these same categorical definitions,

since K-algebras are monoids in the monoidal category of K-semimodules.

We also show that the construction to run two automata in parallel is essen-

tially a proof that the representations of a K-bialgebra are themselves objects of

a monoidal category. In other words, a K-bialgebra structure defines a multi-

plication of K-linear automata. Furthermore, the relation between certain cat-

4

egories of K-linear automata and certain categories of deterministic automata

is given by an adjunction. The functor from K-linear automata to deterministic

automata is a generalization of the standard determinization procedure via the

subset construction.

In addition to automata, we study categories of ”observable representa-

tions”, which are just automata without specified start states. The existence of

final objects in these categories yields a minimization procedure for automata.

1.3 Proofs and Complexity

The original motivation for the work in this dissertation was the proof-theoretic

properties of automata and their morphisms. Here we use the definition of

a proof from proof complexity theory, which defines a proof as an efficiently

verifiable witness to the truth of a statement.

With appropriate restrictions on the input K-algebra, we can use an adjunc-

tion between the category of K-linear automata and a category of deterministic

automata to produce a witness to the equivalence of two equivalent K-linear

automata A and B. This witness consists of a sequence of K-linear automata

and morphisms of K-linear automata. The sequence starts with A and ends

with B. With appropriate restrictions on K and the K-semimodules involved,

this witness can be verified in polynomial time. Note that we are using all three

of our perspectives: representation-theoretic, categorical, and proof-theoretic.

In particular, we can produce proofs of equivalence of nondeterministic fi-

nite automata in this system. We can also augment the system to yield a com-

5

plete proof system for the equational theory of Kleene algebra. This means that

the system may be of use for applications involving verification of properties of

programs. This is discussed in Chapter 8.

1.4 Related and Motivating Work

There is a well-established tradition of using semirings when studying au-

tomata; see, for example, [8], [2], or [20]. There are also many categorical ap-

proaches to the theory of automata, see [1] for a classical account, or [26] for a

more recent version. The novelty of our approach is a combination of the two

ideas, namely, viewing automata as objects in a category of representations of a

(categorical) monoid. Our approach is influenced by the theory of weighted au-

tomata, but differs in that we view the inputs and the states of an automaton as

objects in the same monoidal category. This provides a modern generalization

of the concept of an automaton, and introduces a uniform automata-theoretic

intuition for certain situations involving both algebraic and coalgebraic compo-

nents. It is our hope that this intuition may suggest new and worthwhile prob-

lems in other areas of mathematics that are only apparent from the viewpoint

of automata theory.

We were also influenced by the work of Grossman and Larson, who used

representations of a bialgebra to define automata [12], [11]. Their work is also

our source for the idea of using an automaton to define an element of a dual

vector space; we provide a generalization to commutative semirings, and also

consider constructions and morphisms of automata from a bialgebraic perspec-

tive. Duchamp et al. used the idea of relating standard operations on formal

6

languages, such as intersection and shuffle, to various comultiplications [5], [6].

Similar constructions have appeared in combinatorics, e.g., the shuffle product

bialgebra [28].

The proof system we use is based on Kozen’s proof of the completeness of

regular sets for the equational theory of KA, which appeared in [14]. Equiva-

lence proofs utilizing final objects are a major motivation for the use of “uni-

versal coalgebra” in theoretical computer science [27]. Universal coalgebra and

automata are studied by Rutten in [26], which is our source for the connection

between final objects and minimal automata.

Some of the results in this dissertation have already been published in [29]

and [30].

1.5 Notes on Terminology

In mathematical literature, the word “algebra” most likely refers to some kind

of module enriched with an associative multiplication. The word “coalgebra”

most likely refers to a module with operations satisfying the diagrams dual to

those defining an algebra.

In computer science literature, these words often appear in the context of

“Universal Algebra” and “Universal Coalgebra”. In this case, an “algebraic”

operation is an operation into the carrier of a structure, and a “coalgebraic”

operation is an operation out of the carrier of a structure. For example, “point-

ing” is an algebraic operation, and “observation” is a coalgebraic operation. Of

course, the algebras and coalgebras defined on modules are special cases of uni-

7

versal algebras and coalgebras, respectively. Note that a transition function,

when thought of as a function whose domain and codomain is the state set of

an automaton, can be thought of either algebraically or coalgebraically.

In this dissertation, we resolve the ambiguity with the use of prefixes. Al-

gebras and coalgebras defined on K-semimodules are called K-algebras/K-

coalgebras, where K is a commutative semiring.

The phrase “representation objects” means ”class of structures upon which

a given class of structures acts”. For example, the representation objects of

monoids are sets, the representation objects of rings are modules, and the rep-

resentation objects of fields are vector spaces. Note that a representation is a

representation object along with an action.

Finally, by “nondeterministic automaton”, we mean the standard notion of

a nondeterministic finite automaton as defined in [15]. These are just the non-

deterministic automata that one encounters in an introductory course. We are

concerned mainly with algebraic encodings (and generalizations) of nondeter-

minism, in particular, K-linear automata and (to a lesser extent) weighted au-

tomata. Nonetheless, we occasionally refer to nondeterministic automata, espe-

cially when demonstrating how to encode them algebraically.

8

CHAPTER 2

BACKGROUND AND DEFINITIONS

This chapter contains definitions and background material necessary for the

later chapters. It also serves as an introduction to the main ideas of this dis-

sertation. We define monoids and deterministic automata and express them in

the language of category theory. In subsequent chapters, we apply these ideas

to other categories.

2.1 Monoids and Deterministic Automata

We give the (non-categorical) definitions of monoids, deterministic automata,

and morphisms of deterministic automata. We also define the language ac-

cepted by a deterministic automaton.

Definition 2.1.1. A monoid is a nonempty setM along with an associative binary

operation µ (called multiplication) and a distinguished element 1 ∈M , which is

a two-sided identity for µ.

The operation µ is also denoted ·, or simply by concatenation of inputs. I.e.,

µ(x, y) = x · y = xy.

Definition 2.1.2. Let M and N be monoids. A function f : M → N is a monoid

homomorphism if f(xy) = f(x)f(y) for all x, y ∈M and f(1M) = 1N .

Monoids are ubiquitous in mathematics. For any set S, there is a free monoid

on S. Furthermore, given any set S, two monoids can be defined on the set of

all endofunctions of S.

9

Definition 2.1.3. Let S be a set. The left endomorphism monoid of S, denoted

Endl(S), is the set of all endofunctions of S with multiplication given by

(f · g)(s) = f(g(s))

for all f, g : S → S. The multiplicative identity is the identity function on S.

Definition 2.1.4. Let S be a set. The right endomorphism monoid of S, denoted

Endr(S), is the set of all endofunctions of S with multiplication given by

(f · g)(s) = g(f(s))

for all f, g : S → S. The identity function on S is the multiplicative identity.

The distinction between Endl(S) and Endr(S) allows us to define automata

that read their inputs from left to right and automata that read their inputs from

right to left. The monoids Endl(S) and Endr(S) are related via the following.

Definition 2.1.5. Let M be a monoid. The opposite monoid of M , denoted Mop,

has the same underlying set and multiplicative identity as M . Multiplication in

Mop is denoted µop and defined as

µop(x, y) = µ(y, x).

The representation objects of monoids are sets. Monoids can act on sets from

the left or from the right.

Definition 2.1.6. Let M be a monoid and S be a set. A left action of M on S is a

map

. : M × S → S

written in infix notation, satisfying

1 . s = s

10

(m · n) . s = m . (n . s)

for all m,n ∈M , s ∈ S.

Equivalently, a left action of M on S is a monoid homomorphism from M to

Endl(S). A right action / : S ×M → S is defined analogously and is equivalent

to a monoid homomorphism M → Endr(S).

A monoid action on a set is also called a transition structure. To turn a transi-

tion structure into an automaton, we add a start state and an observation func-

tion. Let the symbol ? denote a fixed one-element set.

Definition 2.1.7. A right deterministic automaton D = (S,M, α, /,Ω, O) consists

of:

1. A nonempty set S of states,

2. An input monoid M ,

3. A start function α : ?→ S,

4. A right action / : S ×M → S

5. A nonempty set O of observations and an observation function Ω : S → O.

Remark 2.1.1. We occasionally refer to “right deterministic M,O-automata”

when we wish to emphasize the input monoid and set of observations.

Left deterministic automata are defined similarly. In the sequel, we will give

only one side of a definition or theorem, the other follows mutatis mutandis.

When it is clear from context, we omit the words “left” and “right”.

A deterministic automaton is frequently defined with an input alphabet Σ

and a transition function δ : S×Σ→ S. One then defines the extended transition

11

function δ̂ : S×Σ∗ → S. This is a special case of the definition above, since Σ∗ is

the free monoid on Σ. By freeness of Σ∗, δ can be uniquely extended to a monoid

homomorphism

/ : Σ∗ → Endr(S).

Automata define functions from the input monoid to the set of observations.

We call such functions languages; they are also known as behaviors.

Definition 2.1.8. Let D = (S,M, α, /,Ω, O) be a right deterministic automaton.

The language accepted by D is the function

ρD : M → O

ρD(m) = Ω(α(?) / m).

Definition 2.1.9. Let D = (S,M, αD, /D,ΩD, O) and E = (T,M, αE, /E,ΩE, O)

be deterministic automata. The automata D and E are said to be equivalent pre-

cisely when ρD = ρE .

Of special importance are maps between automata which preserve the lan-

guage accepted. We require the automata to have the same input monoid and

set of observations.

Definition 2.1.10. Let D = (S,M, αD, /D,ΩD, O) and E = (T,M, αE, /E,ΩE, O)

be deterministic automata. A morphism of deterministic automata is a function

f : S → T

such that the following diagrams commute:

?
αD //

αE ��>
>>

>>
>>

> S

f

��

S
/D //

f

��

S

f

��

S
ΩD //

f

��

O

T T /E

// T T.
ΩE

>>}}}}}}}

12

Remark 2.1.2. In the literature, functions formally similar to morphisms of de-

terministic automata have been called linear sequential morphisms [1], relational

simulations [3], boolean bisimulations [9], and disimulations [29]. Disimulations are

based on the bisimulation lemma of Kleene algebra [14].

A variant of the following theorem is proved in most of the references men-

tioned in the above remark.

Theorem 2.1.1. Let D = (S,M, αD, /D,ΩD, O) and E = (T,M, αE, /E,ΩE, O) be

deterministic automata. If there is an automaton morphism f : D → E, then D and E

are equivalent.

Proof. For any m ∈M ,

ΩD(αD(?) /D m) = ΩE(f(αD(?) /D m))

= ΩE(f(αD(?)) /E m)

= ΩE(αE(?) /E m)

2.2 Monoidal Categories

We express monoids, actions, and transition structures categorically, to facilitate

generalization in later chapters. We use the standard terminology, which is a bit

confusing due to overloading. The main thing to remember is that in a monoidal

category C, there is a bifunctor ⊗ : C × C → C. This bifunctor is best thought

13

of simply as an “associative” binary operation on C with a two-sided identity.

It does not have to be a categorical product or coproduct (although it could be).

Monoids can be defined diagrammatically in any monoidal category. How-

ever, given a monoid M in a monoidal category C, multiplication in M is not

given by the bifunctor ⊗. Instead, multiplication in M is given by an arrow

µ : M ⊗M → M . This arrow must satisfy certain diagrams expressing associa-

tivity and a multiplicative identity.

The material in this section is from [23].

Definition 2.2.1. A monoidal category B = 〈B,⊗, e, a, l, r〉 is a category B, a bi-

functor ⊗ : B × B → B, an object e of B known as the unit object, and three

natural isomorphisms a, r, l (associator, left unit, and right unit). The associator

a is a natural isomorphism between the functors

⊗ (⊗) : B ×B ×B → B

and

(⊗) ⊗ : B ×B ×B → B

i.e.,

a = ax,y,z : x⊗ (y ⊗ z) ∼= (x⊗ y)⊗ z

(note that we identify (B×B)×B andB×(B×B)). Furthermore, the associator

must satisfy the following diagram, for all objects w, x, y, z of B:

w ⊗ (x⊗ (y ⊗ z)) a //

1⊗a
��

(w ⊗ x)⊗ (y ⊗ z) a // ((w ⊗ x)⊗ y)⊗ z

w ⊗ ((x⊗ y)⊗ z) a // (w ⊗ (x⊗ y))⊗ z.

a⊗1

OO

This diagram expresses the pentagonal condition.

14

The natural transformations

lx : e⊗ x ∼= x

and

rx : x⊗ e ∼= x

must satisfy the following diagrams, which ensure that e acts as an identity for

⊗:

x⊗ (e⊗ y) a //

1⊗l &&MMMMMMMMMM
(x⊗ e)⊗ y

r⊗1xxqqqqqqqqqq

x⊗ y

We also require le = re : e⊗ e→ e.

There are two ways to transform w⊗(x⊗(y⊗z)) into ((w⊗x)⊗y)⊗z using a;

the pentagonal condition ensures their equivalence. The following example of

an isomorphism that does not satisfy the pentagonal condition is given in [23].

Let Ab be the category of abelian groups and homomorphisms and ⊗ be the

tensor product over Z. Consider the map

a′ : X ⊗ (Y ⊗ Z)→ (X ⊗ Y)⊗ Z

a′ : x⊗ (y ⊗ z)→ −(x⊗ y)⊗ z.

In the pentagonal diagram, one path fromw⊗(x⊗(y⊗z)) to ((w⊗x)⊗y)⊗z con-

tains two instances of the associator and the other contains three, so a difference

in sign prevents a′ from satisfying the diagram.

The pentagonal condition can be used as the base case in a proof of the coher-

ence theorem ([23], VII.2). The coherence theorem allows us to ignore parentheses

in a monoidal category and simply write X ⊗ Y ⊗ Z.

15

If we want ⊗ to be commutative, we work with symmetric monoidal cate-

gories.

Definition 2.2.2. Let B be a monoidal category. The category B is said to be a

symmetric monoidal category when it is equipped with a natural family of isomor-

phisms

σx,y : x⊗ y ∼= y ⊗ x

such that

σx,y ◦ σy,x = 1x, ry = ly ◦ σy,e : y ⊗ e ∼= y

and the diagram

x⊗ (y ⊗ z) a //

1⊗σ
��

(x⊗ y)⊗ z σ // z ⊗ (x⊗ y)

a

��
x⊗ (z ⊗ y) a // (x⊗ z)⊗ y σ⊗1 // (z ⊗ x)⊗ y

commutes for all objects x, y, z of B.

There is a coherence theorem for symmetric monoidal categories, which al-

lows us to ignore parentheses. See [23] and the references therein.

We now define monoids in monoidal categories.

Definition 2.2.3. Let B = 〈B,⊗, e, a, l, r〉 be a monoidal category. A monoid

〈m,µ, η〉 in B is an object m of B along with an arrow µ : m ⊗ m → m and

an arrow η : e → m. The arrows µ and η must satisfy the following diagrams

expressing associativity of µ and a multiplicative identity:

m⊗ (m⊗m) a //

1⊗µ
��

(m⊗m)⊗m µ⊗1 //m⊗m
µ

��
m⊗m µ //m,

16

e⊗m η⊗1 //

l &&LLLLLLLLLL m⊗m
µ

��

m⊗ e1⊗ηoo

r
xxrrrrrrrrrr

m.

They are known as the associativity diagrams and unit diagrams, respectively.

Definition 2.2.4. Let 〈m,µ, η〉 and 〈m′, µ′, η′〉 be monoids in a monoidal category

B. A morphism of monoids is an arrow f : m → m′ of B satisfying the following

diagrams:

m⊗m
µ

��

f⊗f //m′ ⊗m′

µ′

��
m

f //m′

m
f //m′

e.
η

``AAAAAAAA η′

==||||||||

Example 2.2.1. Set is a monoidal category with ⊗ interpreted as the cartesian

product and ? interpreted as e. Morphisms of monoids are simply monoid ho-

momorphisms.

Example 2.2.2. Another well-known monoidal category is 〈Ab,⊗Z,Z〉, where⊗Z

is the tensor product over the integers. The monoids therein are known as rings.

The coherence theorem for monoidal categories can be used to prove the

General Associative Law ([23], VII.3.1), which states that any two n-fold multipli-

cations in a monoid are equal. This allows us to write expressions involving µ

without parentheses.

Definition 2.2.5. Let B be a monoidal category. The collection of monoids and

morphisms of monoids in B forms a category, called the category of monoids of

B.

Transition structures can also be generalized to monoids in a monoidal cate-

gory.

17

Definition 2.2.6. Let B be a monoidal category and 〈m,µ, η〉 be a monoid in B.

A right action of 〈m,µ, η〉 on an object x of B is an arrow / : x⊗m→ x such that

the following diagram commutes:

(x⊗m)⊗m a−1
//

/⊗1

��

x⊗ (m⊗m)
1⊗µ // x⊗m

/

��

x⊗ e1⊗ηoo

r

��
x⊗m / // x x

1xoo

Left actions are defined similarly, using l.

Definition 2.2.7. Let B be a monoidal category, 〈m,µ, η〉 a monoid in B, and

x, x′ objects of B. Let / and /′ be right actions of 〈m,µ, η〉 on x, x′, respectively.

A morphism of right actions is an arrow f : x→ x′ in B such that

x⊗m f⊗1 //

/

��

x′ ⊗m
/′

��
x

f // x′.

Remark 2.2.1. For a given monoid m in a monoidal category B, the collection of

right actions of m and morphisms of right actions forms a category known as

the category of right representations of m. In [23], this category is denoted Ractm.

In [28], this category is known as the category of right m-modules.

Example 2.2.3. Given a monoid 〈m,µ, e〉 in 〈Ab,⊗Z,Z〉, m is a ring and Ractm is

the category of right m-modules. The arrows of Ractm are homomorphisms of

right m-modules.

We also require the concepts of comonoids and bimonoids in a monoidal cat-

egory. We postpone their introduction until Chapter 5, since our main examples

require the tensor product of semimodules.

18

2.3 Categories and Deterministic Automata

Given a monoid M in Set and a set of observations O, it is easy to see that the

collection of right deterministic M,O-automata are the objects of a category C.

The arrows of C are morphisms of deterministic automata. Every arrow in C is

also an arrow in the category of right representations of M . Note that C cannot

have an initial or a final object (except in trivial cases) since the morphisms

preserve the language accepted.

To minimize automata, and to show completeness of our proof system, we

work with related categories of observable representations.

Definition 2.3.1. Let M be a monoid and O a nonempty set. A right observable

representation consists of a nonempty set S, a right action of M on S, and a func-

tion Ω : S → O.

Remark 2.3.1. Left observable representations are defined similarly. In this sec-

tion, we only work with right observable representations. We therefore omit

the word “right” to avoid excessive wordiness. To emphasize M and O, we

sometimes refer to observable M,O-representations.

Definition 2.3.2. Let D = (S,M, /D,ΩD, O) and E = (T,M, /E,ΩE, O) be ob-

servable representations. An morphism of observable representations is a function

f : S → T such that

f(s /D m) = f(s) /E m

ΩD(s) = ΩE(f(s)).

For a given monoid M and nonempty set O, the collection of observable

representations and their morphisms forms a category. This category has a final

19

object. To define this final object, we must exhibit a right action of M on the set

of all functions M → O.

Lemma 2.3.1. Let M be a monoid and O a nonempty set. Left multiplication in M

defines a right action of M on the set OM via

(f / m)(n) = f(mn)

for all f ∈ OM , m,n ∈M .

Proof. We must show

((f / m) / m′)(n) = (f / mm′)(n).

This is clear; ((f / m) / m′)(n) = (f / m)(m′n) = f(mm′n). Since f / 1 = f , / is a

right action.

Definition 2.3.3. Let M be a monoid and O a nonempty set. Let F =

(S,M, /,Ω, O) be the observable representation defined as follows:

S = {f | f ∈ OM}

(f / m)(n) = f(mn)

Ω(f) = f(1).

Given any observable M,O-representation D, there is a morphism

L : D → F , which maps every state s of D to the language accepted by s.

Definition 2.3.4. Let D = (S,M, /D,ΩD, O) be an observable representation and

s ∈ S. The language accepted by s is the function Ls : M → O given by

Ls(m) = Ω(s / m)

for all m ∈M .

20

Lemma 2.3.2. Let D = (S,M, /D,ΩD, O) be an observable M,O-representation and

let F = (OM ,M, /F ,ΩF , O) be defined as in Definition 2.3.3. Then there is a unique

morphism l : D → F given by

l(s) = Ls

for all s ∈ S.

Proof. We must show that l satisfies ΩD(s) = ΩF (l(s)) and l(s /D m) = l(s) /F m.

The condition on the observation functions is satisfied because

ΩD(s) = ΩD(s / 1) = ΩF (l(s)).

To see that l commutes with the actions of M , note that l(s /D m) is the function

which, on input m′, returns ΩD((s /D m) /D m
′) = ΩD(s /D mm

′). In F , we have

that l(s) /F m is the function which, on input m′, returns

Ls(mm
′) = ΩD(s /D mm

′).

We now claim that l is the only morphism D → F . Suppose for the sake

of contradiction that g : D → F is a morphism such that there exists an s ∈ S

with g(s) 6= Ls. For notational convenience, let Gs = g(s). Since Gs 6= Ls,

there is an m ∈ M such that Gs(m) 6= Ls(m). Since g is a morphism, we must

have ΩD(s / m) = ΩF (g(s) /F m) = Gs(m). The same argument shows that

ΩD(s / m) = Ls(m), a contradiction. Therefore l is unique.

Combining the above, we have the following theorem.

Theorem 2.3.1. Let M be a monoid, O a nonempty set, and F the observable represen-

tation given in Definition 2.3.3. Then F is a final object in the category of observable

M,O-representations.

21

Example 2.3.1. Let M be the free monoid on generators {a, b} and O = {0, 1}.

Then F is the set of all formal languages on {a, b} (here we are identifying a

language and its characteristic function). The observation function ΩF returns 1

if the empty word is in the language, and 0 otherwise. For f ∈ {0, 1}M ,

(f / a)(w) = 1↔ f(aw) = 1.

In other words, f / a is the Brzozowski derivative of f by a.

We now use this final object to minimize automata. We must first eliminate

inaccessible states.

Definition 2.3.5. Let D = (S,M, α, /,Ω, O) be a deterministic M,O-automaton.

A state s ∈ S is said to be accessible if there is an m ∈ M such that α(?) / m = s.

A state s that is not accessible is said to be inaccessible.

Definition 2.3.6. Let D = (S,M, α, /,Ω, O) be a deterministic M,O-automaton.

Let S ′ ⊆ S be the set of accessible states of D, and let D′ = (S ′,M, α, /′,Ω′, O) be

the deterministic M,O-automaton where /′ and Ω′ are the restrictions of / and

Ω to S ′. The automaton D is known as the accessible subautomaton of D.

Lemma 2.3.3. Let D = (S,M, α, /,Ω, O) be a deterministic M,O-automaton and let

D′ be its accessible subautomaton. Then ρD = ρD′ , i.e., D and D′ are equivalent.

Proof. The inclusion map ι : S ′ → S is a deterministic automaton morphism.

Theorem 2.3.2. Let D = (S,M, α, /,Ω, O) be a deterministic M,O-automaton, all of

whose states are accessible. Let M be the deterministic M,O-automaton constructed

according to the following procedure:

• Forget the start state of D, yielding an observable representation D′.

22

• Let M ′ be the image of D′ in F under the unique morphism g.

• Let M be the deterministic M,O-automaton equivalent to D obtained by declar-

ing the image of the start state of D to be the start state of M ′. Note that g is a

deterministic automaton morphism D →M .

ThenM is a minimal in the following sense: for any equivalent deterministic automaton

E, the number of states of E is greater than or equal to the number of states of M . This

is true even if the automata involved have infinitely many states.

Proof. There is a surjective map from the (accessible) states of E to the states of

M . Furthermore, viewing M as an observable representation, no two states of

M accept the same language.

2.4 Proofs and Complexity

We now consider the proof-theoretic applications of deterministic automata and

their morphisms. A sequence

D1, f1, D2, . . . , Dn, fn, Dn+1

of deterministic automata Di and morphisms of deterministic automata

fi : Di → Di+1 is readily seen to be a witness to the equivalence of D1 and Dn+1,

since the fi’s preserve the language accepted. Moreover, given any two equiv-

alent deterministic automata, we can find a sequence witnessing their equiva-

lence.

Theorem 2.4.1. Let D and E be equivalent deterministic M,O-automata. Let D′ and

E ′ be their respective accessible subautomata, and let M be the minimization of D′.

23

Then the sequence

D D′
ι1oo f //M E ′

goo ι2 // E

witnesses the equivalence of D and E. Here ι1 is the inclusion of D′ into D, ι2 is the

inclusion of E ′ into E, f is the unique morphism from D′ to M , and g is the unique

morphism from E ′ to M .

Proof. This is a consequence of Lemma 2.3.3 and Theorem 2.3.2. The automata

D′ and E ′ map to the same M because the map to the final observable represen-

tation sends a state to the language it accepts.

If we restrict the complexity of the automata and morphisms, we can get a

proof system, similar to the proof systems defined in [4]. Here we assume a

binary encoding of the theory in question.

Definition 2.4.1. Let L ⊆ {0, 1}∗. A proof system for L is a binary relation P (x, y)

satisfying the following three conditions:

• Completeness: x ∈ L→ ∃y P (x, y).

• Soundness: ∃y P (x, y)→ x ∈ L.

• P (x, y) is an efficiently verifiable relation.

Example 2.4.1. LetM be the free monoid on generators {a, b} andO = {0, 1}. Us-

ing any reasonable binary encoding of automata and morphisms, the witness-

ing sequences for equivalent deterministic finite state automata can be verified

efficiently.

24

CHAPTER 3

SEMIRINGS, SEMIMODULES, AND WEIGHTED AUTOMATA

In order to introduce other types of automata, we must define semirings and

semimodules and establish some of their basic properties. Semirings and

semimodules underlie weighted automata, whose observation functions are

semiring-valued and whose states are elements of finitely generated free semi-

modules. Furthermore, weighted automata accept formal power series, which

have coefficients from a semiring. See [2] and [20].

In later chapters, we endow the set of inputs to an automaton with a semi-

module structure. This allows us to work with K-linear automata, which are a

representation-theoretic generalization of deterministic automata.

3.1 Basic Definitions

The material in this section is from [10].

Definition 3.1.1. A semiring is a structure (K,+, ·, 0, 1) such that (K,+, 0) is a

commutative monoid, (K, ·, 1) is a monoid, and the following laws hold:

j(k + l) = jk + jl

(k + l)j = kj + lj

0k = k0 = 0

for all j, k, l ∈ K. If (K, ·, 1) is a commutative monoid, then K is said to be a

commutative semiring. If (K,+, 0) is an idempotent monoid, then K is said to be

an idempotent semiring.

25

The representation objects of semirings are known as semimodules.

Definition 3.1.2. Let K be a semiring. A left K-semimodule is a commutative

monoid (M,+, 0) along with a left action of K on M . The action satisfies the

following axioms:

(j + k)m = jm+ km

j(m+ n) = jm+ jn

(jk)m = j(km)

1m = m

k0M = 0M = 0Km

for all j, k ∈ K and m,n ∈M . If addition in M is idempotent, M is said to be an

idempotent left K-semimodule.

RightK-semimodules are defined analogously. In the sequel, we give only “one

side” of a definition. If K is commutative, then every left K-semimodule can be

regarded as a right K-semimodule, and vice versa. In this case, we omit the

words “left” and “right”.

Example 3.1.1. LetK be a semiring andm,n be positive integers. The set ofm×n

matrices over K is a left K-semimodule, and the set of m ×m matrices over K

is a semiring, using the standard definitions of matrix addition, multiplication,

and left scalar multiplication.

Semimodules can be combined using the operations of direct sum and direct

product.

Definition 3.1.3. Let K be a semiring and {Mi | i ∈ I} be a collection of left

K-semimodules for some index set I . Let M be the cartesian product of the

26

underlying sets of the Mi’s. The direct product of the Mi’s, denoted
∏
Mi, is the

set M endowed with pointwise addition and scalar multiplication. The direct

sum of the Mi’s, denoted
⊕

Mi, is the subsemimodule of
∏
Mi in which all but

finitely many of the coordinates are 0.

Remark 3.1.1. As usual, direct products and direct sums coincide when I is finite.

Standard definitions from the theory of modules can be generalized to the

theory of semimodules.

Definition 3.1.4. Let K be a semiring and M,N be left K-semimodules. A func-

tion φ : M → N is a left K-semimodule homomorphism if

φ(m+m′) = φ(m) + φ(m′) for all m,m′ ∈M

φ(km) = kφ(m) for all m ∈M,k ∈ K.

Such φ are also called K-linear maps.

Definition 3.1.5. Let K be a semiring and M a left K-semimodule. Let

{Mi | i ∈ I} be an indexed family of subsemimodules of M . For each i, we have

an injection

ιi : Mi →M

and so there is an induced K-linear map

ι∗ :
⊕

Mi →M

ι∗((xi)) =
∑
i∈I

xi.

This sum exists, since only finitely many of the entries in (xi) are non-zero. If ι∗ is

an isomorphism, we say that the family {Mi | i ∈ I} is a direct sum decomposition

of M and write M =
⊕

iMi.

27

Definition 3.1.6. Let K be a semiring, M a left K-semimodule, and ≡ an equiv-

alence relation on M . Then ≡ is a congruence relation if and only if

m ≡ m′ and n ≡ n′ implies m+ n ≡ m′ + n′

m ≡ m′ implies km ≡ km′

for all k ∈ K, m,m′, n, n′ ∈M .

Definition 3.1.7. Let K be a semiring, M a left K-semimodule, and ≡ a congru-

ence relation on M . For each m ∈ M , let [m] be the equivalence class of m with

respect to ≡. Let M/≡ be the set of all such equivalence classes. Then M/≡ is a

left K-semimodule with the following operations:

[m] + [n] = [m+ n]

k[m] = [km]

for all m,n ∈ M,k ∈ K. This semimodule is known as the factor semimodule of

M by ≡. It is also sometimes called a quotient semimodule.

In the sequel, we use elementary facts about factor semimodules, free semi-

modules, congruence relations, and homomorphisms without comment. See

[10] for proofs.

The collection of left K-semimodules and K-linear maps form a category,

which we denote by K-Mod.

3.2 Free K-semimodules and Weighted Automata

Unlike vector spaces, not all K-semimodules are free K-semimodules (neither

are all modules over a ring free modules). However, free K-semimodules exist,

28

and have all the nice properties that freeness entails.

Definition 3.2.1. Let K be a semiring and X a nonempty set. The free left K-

semimodule on X is the set of all finite formal sums of the form

k1x1 + k2x2 + · · ·+ knxn

with ki ∈ K and xi ∈ X . Alternatively, it is the set of all f ∈ KX with finite

support. Addition and the action of K are defined pointwise.

Equivalently, one can define a left K-semimodule M to be free if and only if

M has a basis [10].

Definition 3.2.2. Let M be a left K-semimodule and X a nonempty subset of

M . Then there is a unique K-linear map φ from the free left K-semimodule on

X to M given by

φ(f) =
∑
x∈X

f(x)x.

If φ is surjective, then X is said to be a set of generators of M . If φ is injective, then

X is said to be linearly independent. If φ is a bijection, then X is said to be a basis

of M .

Remark 3.2.1. Using Definition 3.1.5, it is easy to see that the free left K-

semimodule on a nonempty set X is isomorphic to
⊕

x∈X K.

Remark 3.2.2. If M is a left K-semimodule with a basis of size m, and N is a left

K-semimodule with a basis of size n, when m,n are positive integers, then a

K-linear map from M to N can be represented by an n×m matrix over K.

The states of a weighted automaton are elements of a free K-semimodule on

a finite set.

29

Definition 3.2.3. Let S be a finite nonempty set with n elements, Σ a finite al-

phabet, and K a semiring. A right K-weighted automaton W = (KS, s, Tx,Σ, t)

consists of the following:

1. A 1× n start vector s ∈ KS ,

2. An n× n transition matrix over K for each x ∈ Σ, denoted Tx,

3. An n× 1 observation vector t over K.

Remark 3.2.3. This is essentially the definition of a linear representation given in

[2].

Definition 3.2.4. Let W = (KS, s, Tx,Σ, t) be a right K-weighted automaton.

The language accepted by W is the formal power series ρW ∈ KΣ∗ given by

ρW (w) = s · Tx1 · Tx2 · · ·Txn · t

for each w = x1x2 · · ·xn ∈ Σ∗.

Remark 3.2.4. Cf. recognizable formal series in [2].

Remark 3.2.5. Note that the transition matrices act on the start vector by multi-

plication on the right. In other words, these automata read their inputs from left

to right. Left K-weighted automata are defined similarly.

This definition requires many assumptions: the heart of the definition is the

action of a free monoid on a free K-semimodule on a finite set. This is a ”low-

level” generalization of deterministic automata. A ”high-level” generalization,

given in Chapter 6, uses the fact that K-semimodules are the representation

objects of K-algebras. However, the definition of a weighted automaton does

allow for the semiring K to be noncommutative, whereas the definition of a

K-algebra requires K be be commutative.

30

3.3 Dual Semimodules

Dual semimodules allow us to express “observation/state space duality” for

weighted automata. In this section, we requireK to be a commutative semiring.

Definition 3.3.1. Let K be a commutative semiring and M a K-semimodule.

The set of all K-linear maps M → K is denoted Lin(M,K).

The following two lemmas are simple generalizations of standard facts about

dual R-modules, where R is a commutative ring.

Lemma 3.3.1. Let K be a commutative semiring and M a K-semimodule. The set

Lin(M,K) can be endowed with a K-semimodule structure.

Proof. The set Lin(M,K) is a commutative monoid under pointwise addition.

Let f ∈ Lin(M,K). The action of K on Lin(M,K), denoted ., is defined by

k . f(m) = kf(m). Commutativity of K is needed to show that the resulting

functions are K-linear.

Lemma 3.3.2. Let K be a commutative semiring, X a finite nonempty set, and F the

free K-semimodule on X . Then Lin(F,K) is also a free K-semimodule on a set of size

|X|.

Proof. Let x1, x2, . . . , xn be a basis of F . Let fi ∈ Lin(F,K) be such that

fi(xj) = 1 if i = j, and 0 otherwise.

We claim that the fi’s are a basis of Lin(F,K). Let g ∈ Lin(F,K). We must

express g as a K-linear combination of the f ′is. Set ai = g(xi). Given an arbitrary

31

k1x1 + k2x2 + · · · knxn ∈ F ,

g(k1x1 + k2x2 + · · ·+ knxn)

= g(k1x1) + g(k2x2) + · · ·+ g(knxn)

= k1g(x1) + k2g(x2) + · · ·+ kng(xn)

= k1a1 + k2a2 + · · ·+ knan

= a1f1(k1x1 + · · ·+ knxn) + · · ·+ anfn(k1x1 + · · ·+ knxn)

and so g = a1f1 + a2f2 + · · ·+ anfn. Hence the f ′is generate Lin(F,K). Moreover,

the fi’s are linearly independent; if

j1f1 + j2f2 + · · ·+ jnfn = j′1f1 + j′2f2 + · · ·+ j′nfn,

then evaluating each side on xi yields ji = j′i.

Remark 3.3.1. The fi’s in the proof of Lemma 3.3.2 are known as the dual basis of

the basis {x1, x2, . . . , xn}. The dual basis is also denoted {x∗1, x∗2, . . . , x∗n}.

We note that reversal of weighted automata can be expressed using dual

modules. We require the following lemma.

Lemma 3.3.3. Let A,B be matrices over a commutative semiring K, where the sizes of

A and B are such that AB is defined. Then

(AB)T = BTAT.

Proof. The standard proof from linear algebra is valid in this case.

Theorem 3.3.1. Let A = (S, s, Tx,Σ, t) be a weighted automaton. Then the weighted

automaton B = (Lin(M,K), tT, TT
x ,Σ, s

T) satisfies

ρA(w) = ρB(wR)

32

for all w ∈ Σ∗, where wR is the reverse of a word w.

Proof. To prove the claim, let w = x1x2 · · ·xn with xi ∈ Σ. For some k ∈

K, ρA(w) = k. By definition,

ρA(w) = s · Tx1Tx2 · · ·Txn · tT = k.

Taking the transpose of both sides of this equation yields ρB(wR) = kT = k.

This result is basically an application of the following two facts.

Lemma 3.3.4. Let M be a monoid and S a set. A left action of M on S is equivalent to

a right action of Mop on S, and vice versa.

Proof. Straightforward.

Lemma 3.3.5. [7] Let V , W be finite dimensional vector spaces over a field F with

bases {v1, v2, . . . , vn} and {w1, w2, . . . , wm}, respectively. Fix φ ∈ Lin(V,W). For

each f ∈ W ∗, f ◦ φ is a linear transformation V → F . Denote this transformation φ∗.

We have

φ∗ : W ∗ → V ∗

φ∗(f) = f ◦ φ

is a linear transformation W ∗ → V ∗. The transpose of the matrix for φ with respect to

the bases {v1, v2, . . . , vn} and {w1, w2, . . . , wm} is the matrix for φ∗ with respect to the

dual bases of V and W .

Proof. The proof in [7] is valid even if “F is a field” is weakened to “F is a

commutative semiring”.

33

In general, actions “change sides” when dualizing (cf. Lemma 2.3.1). The

transitions of a right K-weighted automaton define a left action of Σ∗ on the

dual of the underlying K-semimodule. This left action is equivalent to a right

action of Σop. The transpose represents the right action of Σop, hence input

words get reversed.

34

CHAPTER 4

TENSOR PRODUCTS OVER COMMUTATIVE SEMIRINGS

We would like to define monoids in K−Mod. To do this, we must have a bi-

functor which makes K−Mod into a monoidal category. The tensor product is

this bifunctor.

The tensor product of a finite sequence of K-semimodules is a universal ob-

ject representing multilinear maps out of theK-semimodules. Multilinear maps

play a crucial role in the theory of K-linear automata, as we will see in Chapters

5 and 6. Briefly, concatenation of words corresponds to a map from a tensor

product, and certain ways of combining automata involve tensor products of

start, accept, and transition functions. Furthermore, the tensor product allows

us to define comultiplication.

Unfortunately, the literature contains multiple inequivalent definitions of the

tensor product of K-semimodules: the tensor product as defined in [10] is not

the same as the tensor product defined in [22] or [13]. In fact, the tensor prod-

uct defined in [10] is the trivial K-semimodule when applied to idempotent

K-semimodules. We discuss alternative constructions in Section 4.3.

4.1 Constructing the Tensor Product

We assume that K is a commutative semiring and mimic the construction of the

tensor product of modules over a commutative ring in [21]. This is essentially

the construction used in [22] and [13]. The point is to work in the appropriate

category and construct an object with the appropriate universal property.

35

We first recall the definition of a multilinear map.

Definition 4.1.1. Let M1,M2, . . . ,Mn, F be K-semimodules. A map

f : M1 ×M2 × · · · ×Mn → F

is said to be K-multilinear if it is K-linear in each variable. That is, for a choice

of elements m1,m2, . . . ,mi−1,mi+1, . . . ,mn the map

m 7→ f(m1,m2, . . . ,mi−1,m,mi+1, . . . ,mn)

is a K-linear map Mi → F . Such a map is also called an n-multilinear map, or a

K-bilinear map when n = 2.

The tensor product over a commutative ring R is defined by the following

universal property. Let M1,M2, ...,Mn be R-modules. Let C be the category

whose objects are n-multilinear maps

f : M1 ×M2 × · · · ×Mn → F

where F ranges over R-modules. To define the arrows of C, let

f : M1 ×M2 × · · · ×Mn → F and g : M1 ×M2 × · · · ×Mn → G

be objects of C. An arrow f → g in C is an R-linear map h : F → G such that

h◦f = g. A tensor product ofM1,M2, ...,Mn, denotedM1⊗RM2⊗R ···⊗RMn, is an

initial object in C. The tensor product exists and is unique up to isomorphism.

We now construct the tensor product of semimodules over a commuta-

tive semiring. Let K be a commutative semiring and M1,M2, ...,Mn be K-

semimodules. Let T be the free K-semimodule on the (underlying) set

M1 ×M2 × · · · ×Mn. Let ≡ be the congruence relation on T generated by the

equivalences

(m1, ...,mi +Mi
m′i, ...,mn) ≡ (m1, ...,mi, ...,mn) +T (m1, ...,m

′
i, ...,mn)

36

(m1, ..., kmi, ...,mn) ≡ k(m1, ...,mi, ...,mn)

for all k ∈ K,mi,m
′
i ∈Mi, 1 ≤ i ≤ n.

Let ι : M1×M2×···×Mn → T be the canonical injection ofM1×M2×···×Mn

into T . Let φ be the composition of ι and the quotient map q : T → T/≡.

Theorem 4.1.1. The map φ is multilinear and is a tensor product of

M1,M2, ...,Mn.

Proof. Multilinearity of φ is obvious from its definition. Let G be a K-

semimodule and

g : M1 ×M2 × · · · ×Mn → G

be a K-multilinear map. By freeness of T , there is a unique K-linear map

γ : T → G such that the following diagram commutes:

T

γ

��

M1 ×M2 × · · · ×Mn

ι

66mmmmmmmmmmmmmmm

g
((QQQQQQQQQQQQQQ

G.

The kernel of γ, denoted ≡γ , is a congruence relation on T given by

t ≡γ t′ if and only if γ(t) = γ(t′)

for all t, t′ ∈ T . Since g is K-multilinear, t ≡ t′ implies t ≡γ t′, where ≡ is the

congruence relation used in the definition of the tensor product. Therefore γ can

be factored through T/≡, and there is a K-linear map

g∗ : T/≡→ G

37

making the following diagram commute:

T/≡

g∗

��

M1 ×M2 × · · · ×Mn

φ
66mmmmmmmmmmmmmm

g
))RRRRRRRRRRRRRRR

G.

The image of φ generates T/≡, so g∗ is uniquely determined.

We denote the module T/≡ by M1 ⊗K M2 ⊗K · · · ⊗K Mn. When it is clear

from context, we omit the subscript on the ⊗ symbol. For (xi) ∈
∏
Mi, we

denote φ(x1, x2, ..., xn) by x1⊗ x2⊗ · · · ⊗ xn. Note that we can write any element

of M ⊗N as a sum of terms of the form m⊗ n, because k(m⊗ n) = km⊗ n and

terms of the form m⊗ n generate M ⊗N .

One can do away with this construction and show that the tensor prod-

uct exists using purely categorical methods: see Chapter V, Section 8 of [23].

Nonetheless, this more concrete construction is useful for our purposes, since

we frequently reason about specific elements of tensor products in the sequel.

4.2 Properties of the Tensor Product

Tensor products enjoy many useful properties. This section is devoted to the

proofs of Theorems 4.2.1 and 4.2.2. These theorems establish that K−Mod is a

symmetric monoidal category. They also describe the structure of tensor prod-

ucts of free K-semimodules. The proofs rely on the initiality of the tensor prod-

uct and are straightforward generalizations of the proofs for tensor products

over a commutative ring in [21]. We provide them for completeness.

38

Theorem 4.2.1. Let K be a commutative semiring, n a positive integer, and

M1, N1,M2, N2, . . . ,Mn, Nn be K-semimodules. Then:

1. There is a unique isomorphism

M1 ⊗ (M2 ⊗M3)→ (M1 ⊗M2)⊗M3

such that

m1 ⊗ (m2 ⊗m3) 7→ (m1 ⊗m2)⊗m3

for all mi ∈Mi, 1 ≤ i ≤ 3.

2. There is a unique isomorphism

M1 ⊗M2 →M2 ⊗M1

such that

m1 ⊗m2 7→ m2 ⊗m1

for all mi ∈Mi, 1 ≤ i ≤ 2.

3. There is a unique isomorphism

M1 ⊗K ∼= M1

such that

m⊗ k 7→ km

for all k ∈ K,m ∈M1.

4. Let Mi, Ni be K-semimodules, 1 ≤ i ≤ n, and let fi : Mi → Ni be a collection of

K-linear maps. Then there is a unique K-linear map

M1 ⊗M2 ⊗ · · · ⊗Mn → N1 ⊗N2 ⊗ · · · ⊗Nn

39

satisfying

m1 ⊗m2 ⊗ · · · ⊗mn 7→ f1(m1)⊗ f2(m2)⊗ · · · ⊗ fn(mn)

for all mi ∈Mi.

5. M ⊗ (
⊕

i∈I Ni) ∼=
⊕

i∈I(M ⊗Ni) for any index set I .

6. Let M ,N be free K-semimodules with bases {mi}i∈I and {nj}j∈J , respectively.

Then M ⊗N is a free K-semimodule with basis {mi ⊗ nj}i∈I,j∈J .

Proof of (1). For m1 ∈M1, let fm1 be the map

fm1 : M2 ×M3 → (M1 ⊗M2)⊗M3

(m2,m3) 7→ (m1 ⊗m2)⊗m3.

The map fm1 is K-bilinear. Therefore fm1 defines a K-linear map

f ∗m1
: M2 ⊗M3 → (M1 ⊗M2)⊗M3

m2 ⊗m3 7→ (m1 ⊗m2)⊗m3.

Now consider the K-bilinear map

M1 × (M2 ⊗M3)→ (M1 ⊗M2)⊗M3

(m1,m2 ⊗m3) 7→ f ∗m1
(m2 ⊗m3).

This defines aK-linear mapM1⊗(M2⊗M3)→ (M1⊗M2)⊗M3 with the specified

action on the generators, which guarantees uniqueness. A similar construction

yields the inverse map (M1 ⊗M2)⊗M3 →M1 ⊗ (M2 ⊗M3).

Proof of (2). It is easy to see that the map

M1 ×M2 →M2 ⊗M1

40

(m1,m2) 7→ m2 ⊗m1

is K-bilinear. Therefore it factors through the tensor product and maps m1⊗m2

to m2 ⊗m1. By symmetry, there is an inverse M2 ⊗M1 → M1 ⊗M2. The map is

unique because elements of the form m⊗ n generate the tensor product.

Proof of (3). We prove a slightly more general statement. Let M be a K-

semimodule and N a free K-semimodule with basis {n}. We claim that M ⊗N

and M are isomorphic. The map

f : M ×N →M

(m, kn) 7→ km

is a K-bilinear map from M ×N to M , and hence induces a K-linear map

f ′ : M ⊗N →M

m⊗ kn 7→ km.

There is also a K-linear map

g : M →M ⊗N

m 7→ m⊗ n.

A simple calculation shows that f ′ and g are inverse to each other. The maps

are unique since we have specified their actions on generating sets. This implies

4.2.1.3, since K can be considered as a free K-semimodule over itself with basis

{1}.

Proof of (4). The fi’s define a function on the product

∏
i

fi :
∏
i

Mi →
∏
i

Ni.

41

The function
∏
fi is not K-multilinear, but it is easy to check that the composi-

tion of
∏
fi with the canonical K-multilinear map

φ : N1 ×N2 × · · · ×Nn → N1 ⊗N2 ⊗ · · · ⊗Nn

is a K-multilinear map

M1 ×M2 × · · · ×Mn → N1 ⊗N2 ⊗ · · · ⊗Nn.

This maps sends (m1,m2, . . . ,mn) to f1(m1) ⊗ f2(m2) ⊗ · · · ⊗ fn(mn). By the

initiality of the tensor product of the Mi’s, there is a unique K-linear map

M1 ⊗M2 ⊗ · · · ⊗Mn → N1 ⊗N2 ⊗ · · · ⊗Nn

satisfying

m1 ⊗m2 ⊗ · · · ⊗mn 7→ f1(m1)⊗ f2(m2)⊗ · · · ⊗ fn(mn).

This induced map is denoted T (f1, f2, . . . , fn) or f1 ⊗ f2 ⊗ · · · ⊗ fn. Note that

f1 ⊗ f2 ⊗ · · · ⊗ fn is an abuse of notation; f1 ⊗ f2 ⊗ · · · ⊗ fn could also denote

an element of Lin(M1, N1) ⊗ Lin(M2, N2) ⊗ · · · ⊗ Lin(Mn, Nn), since Lin(Mi, Ni)

is a K-semimodule by Lemma 3.3.1. Nonetheless, this notation is common in

the literature, and we use it occasionally. The meaning will be clear from the

context.

To prove (5), we must establish a few properties of T .

Lemma 4.2.1. The map

T :
n∏
i=1

Lin(Mi, Ni)→ Lin(
n⊗
i=1

Mi,
n⊗
i=1

Ni)

is K-multilinear.

42

Proof. Fix an index i such that 1 ≤ i ≤ n, and fix fj ∈ Lin(Mj, Nj) for all

1 ≤ j ≤ n, j 6= i. Let g, h ∈ Lin(Mi, Ni). We must show that the map

ψ : Lin(Mi, Ni)→ Lin(
n⊗
i=1

Mi,

n⊗
i=1

Ni)

ψ(g) 7→ T (f1, . . . , fi−1, g, fi+1, . . . fn)

is a K-linear map. By definition,

ψ(g + h) =

T (f1, . . . , fi−1, (g + h), fi+1, . . . , fn) =

λ(x1 ⊗ · · · ⊗ xn).f1(x1)⊗ · · · ⊗ (g + h)(xi)⊗ · · · ⊗ fn(xn) =

λ(x1⊗· · ·⊗xn).f1(x1)⊗· · ·⊗g(xi)⊗· · ·⊗fn(xn)+f1(x1)⊗· · ·⊗h(xi)⊗· · ·⊗fn(xn)

= ψ(g) + ψ(h).

A similar argument shows ψ(kg) = kψ(g). Since i was arbitrary, T is

K-multilinear.

Lemma 4.2.2 establishes the functoriality of T .

Lemma 4.2.2. Let n be a positive integer and Mi, Ni, Oi be K-semimodules for

1 ≤ i ≤ n. Let fi : Mi → Ni and gi : Ni → Oi. Then

T (f1 ◦ g1, f2 ◦ g2, . . . , fn ◦ gn) = T (f1, f2, . . . , fn) ◦ T (g1, g2, . . . , gn).

Furthermore,

T (1M1 , 1M2 , . . . , 1Mn) = id,

where id is the identity function on M1 ⊗M2 ⊗ · · · ⊗Mn.

Proof. Straightforward calculation.

43

Example 4.2.1. For a fixed K-semimodule M , let τM be the endofunctor on

K−Mod such that

τM(N) = M ⊗N

τM(f) = T (1M , f)

for all K-semimodules N,N ′ and K-linear maps f : N → N ′. Lemma 4.2.2

ensures that τ is a functor. Lemma 4.2.1 ensures that τ ’s action on arrows of

K−Mod is a K-linear map from Lin(N,N ′) to Lin(M ⊗N,M ⊗N ′).

The proof of (5) also requires the following criterion for a K-semimodule to

be a direct product of finitely many K-subsemimodules.

Lemma 4.2.3. Let M be a K-semimodule and n ≥ 1. Let

φi : M →M 1 ≤ i ≤ n

be a collection of K-linear maps satisfying

φi ◦ φj = 0 if i 6= j,
n∑
i=1

φi = 1M .

Let Mi = φi(M), and let

φ : M →
∏

Mi

φ(m) = (φ1(m), φ2(m), . . . , φn(m)).

Then φ is a K-linear isomorphism M →
∏
Mi.

Proof. We first note that φ2
i = φi for 1 ≤ i ≤ n:

φi = φi ◦ 1M = φi ◦
n∑
j=1

φj = φi ◦ φi.

The map φ is injective: suppose φ(m) = φ(n) for some m,n ∈ M . By definition,

φi(m) = φi(n) for 1 ≤ i ≤ n. This implies
∑
φi(m) =

∑
φi(n), hence 1M(m) =

44

1M(n). To see that φ is surjective, let y = (y1, y2, . . . , yn) ∈
∏
Mi. Let x =

∑
yi.

Then φi(x) = yi, so φ(x) = y.

We now use the functorial properties of the tensor product to establish (5)

for the case when the index set I is finite.

Lemma 4.2.4. Let M be a K-semimodule and N =
⊕n

i=1Ni be a direct sum of K-

semimodules. Then there is an isomorphism

M ⊗ (
n⊕
i=1

Ni) ∼=
n⊕
i=1

(M ⊗Ni).

such that

m⊗ (n1, n2, . . . , nn)→ (m⊗ n1,m⊗ n2, . . . ,m⊗ nn).

Proof. There are projections πi : N → Ni ⊆ N such that

πi ◦ πi = πi πi ◦ πj = 0 if i 6= j,

n∑
i=1

πi = 1N .

Consider the functor τM from Example 4.2.1. If we apply τM to the πi’s, we get a

direct sum decomposition of τM(N) = M ⊗N , by Lemma 4.2.3 and the remarks

in Example 4.2.1. The direct summands are the M ⊗Ni’s.

To prove (5), we paste together the isomorphisms from Lemma 4.2.4 for all

finite subsets of an arbitrary index set.

Proof of (5). Let I be an arbitrary index set and M, {Ni | i ∈ I} be

K-semimodules. We wish to construct an isomorphism

M ⊗ (
⊕
i∈I

Ni)→
⊕
i∈I

(M ⊗Ni).

45

We construct a K-linear map with this type, then argue that it is an isomor-

phism. By the universal property of the tensor product, such a map corresponds

to a K-bilinear map

M × (
⊕
i∈I

Ni)→
⊕
i∈I

(M ⊗Ni).

Now, for any finite subset S ⊆ I , we have

M ⊗ (
⊕
i∈S

Ni) ∼=
⊕
i∈S

(M ⊗Ni)

by Lemma 4.2.4. Again by the universal property of the tensor product, this

defines a K-bilinear map

M × (
⊕
i∈S

Ni) ∼=
⊕
i∈S

(M ⊗Ni).

The inclusion map S → I induces a K-linear map⊕
i∈S

(M ⊗Ni)→
⊕
i∈I

(M ⊗Ni).

Composing these two maps yields a K-bilinear map

φS : M × (
⊕
i∈S

Ni)→
⊕
i∈I

(M ⊗Ni)

for any finite S ⊆ I .

The desired map can then be described as follows: for any x ∈M×(
⊕

i∈I Ni)

of the form (m,n), where n 6= 0, find the smallest finite S ⊆ I such that all of

the nonzero components of x are in Ns for some s ∈ S. We can then view x as

an element of M × (
⊕

s∈S Ns). The image of x is φS . Elements of the form (m, 0)

are sent to the zero element of
⊕

i∈I(M ⊗Ni).

We must show that the composite map is K-multilinear. This follows from

two facts. Let S ⊆ S ′. First, there is an injection

M × (
⊕
s∈S

Ns)→M × (
⊕
s′∈S′

Ns′).

46

Second, the restriction of φS′ to S, i.e., to elements of the form (m,n), where

n ∈
⊕

s∈S Ns, is the same function as φS .

An inverse for the composite map can be constructed in a similar manner.

Proof of (6). Suppose first that N is a free K-semimodule with basis {n} and M

is a K-semimodule. The proof of (3) exhibits an isomorphism

M →M ⊗N

m 7→ m⊗ n.

Note that any element of M ⊗ N can be written as a sum of terms of the form

m⊗ kn for k ∈ K and m ∈M . Given such a sum,

n∑
i=1

mi ⊗ kin =
n∑
i=1

kimi ⊗ n = (
n∑
i=1

kimi)⊗ n.

Hence each element of M ⊗ N can be written as m ⊗ n for some m ∈ M . The

aforementioned isomorphism shows that each element of M ⊗N can be written

uniquely in the form m⊗ n.

Now suppose that N is the free K-semimodule on some set {ni}i∈I . By (5),

M ⊗N is isomorphic to
⊕

i∈I(M ⊗Ni), where each Ni is the free K-semimodule

on ni. Therefore, using the above argument, we can write each element ofM⊗N

uniquely as a term ∑
i∈I

mi ⊗ ni

with mi ∈M and almost all of the mi’s equal to 0.

Finally, suppose that M is a free K-semimodule on a set {mj}j∈J . Arguing

similarly, each element of M ⊗ N can expressed uniquely as a finite K-linear

47

combination of terms of the form mj ⊗ ni. This implies that M ⊗ N is the free

K-semimodule on basis {mj ⊗ ni}j∈J,i∈I .

Theorem 4.2.2. The category K−Mod is a symmetric monoidal category with bifunc-

tor ⊗K . The unit object is K considered as a K-semimodule over itself.

Proof. The associator is given by Theorem 4.2.1.1. The left unit map is given by

Theorem 4.2.1.3, and the right unit is defined similarly. The symmetry is the K-

linear map in 4.2.1.4. That ⊗ is a bifunctor follows from Lemma 4.2.2. We must

also verify the commutativity of the pentagonal diagram and the naturality of

the associator, left unit, right unit, and symmetry isomorphisms. These follow

immediately from the diagrams.

4.3 Alternative Constructions

The construction of the tensor product over a semiring in [10] is based on a stan-

dard construction of a tensor product over an arbitrary (not necessarily commu-

tative) ring. We summarize the standard construction (see [7] for details) and

explain the difficulties in generalizing it to semirings. In this section, let R be a

ring with 1 which is not necessarily commutative.

Definition 4.3.1. Let M be a right R-module, N be a left R-module, and L an

abelian group. A map f : M ×N → L is said to be R-balanced if it satisfies

f(m+m′, n) = f(m,n) + f(m′, n)

f(m,n+ n′) = f(m,n) + f(m,n′)

f(mr, n) = f(m, rn)

for all m,m′ ∈M , n, n′ ∈ N , and r ∈ R.

48

The tensor product of two R-modules M and N is a universal object repre-

senting R-balanced maps out of M × N . To construct it, we first construct the

free abelian group on the set M ×N and then quotient out by a relation similar

to that in Section 4.1. Denote the resulting group byM⊗RN and let ι be induced

R-balanced map ι : M ×N →M ⊗R N . We have:

Theorem 4.3.1. (Theorem 10.10.4 [7]) Let R be a ring with 1, M a right R-module,

and N a left R-module.

1. If Φ : M ⊗R N → L is any group homomorphism from M ⊗R N to an abelian

group L then the composite map φ = Φ ◦ ι is an R-balanced map from M ×N to

L.

2. Conversely, suppose L is an abelian group and φ : M×N → L is anyR-balanced

map. Then there is a unique group homomorphism Φ : M ⊗R N → L such that

φ factors through ι, i.e., φ = Φ ◦ ι.

Note that the tensor product is just an abelian group — there is noR-module

structure on it. In general, M is not a left R-module and N is not a right R-

module, so we cannot expect M ⊗R N to be a right or left R-module. Hence we

start with the free abelian group on M ×N , and not a free R-module on M ×N .

The construction of the tensor product of two semimodules in [10] is a gener-

alization of this. It begins with taking the free commutative monoid on M ×N ,

where M is a right S-semimodule and N is a left S-semimodule for an arbi-

trary semiring S. In order to state the universal property of the tensor product

constructed in [10], we first define a congruence relation on S-semimodules.

Definition 4.3.2. Let S be a semiring andM be a left S-semimodule. Let≡ be the

congruence relation on M defined by m ≡ m′ if and only if there is an m′′ ∈ M

49

with m+m′′ = m′ +m′′. We denote the equivalence class of an element m ∈ M

by [m]≡.

We now give the universal property of the tensor product in [10]. Note that

an N-semimodule is just a commutative monoid. We have:

Theorem 4.3.2. (Proposition 16.14 [10]) Let R be a semiring, let M be a right R-

semimodule, let N be a left R-semimodule, and let T be an N-semimodule. If

θ : M⊗N → T is anR-balanced function then there exists a unique N-homomorphism

ψ : M ⊗R N → T/≡ satisfying the condition that ψ(m ⊗ n) = [θ(m,n)]≡ for all

m ∈M and n ∈ N .

We end this chapter with a lemma showing that the congruence relation in

Definition 4.3.2 relates every two elements of an idempotent semimodule.

Lemma 4.3.1. Let M be an idempotent S-semimodule for some semiring S, and let

m,m′ ∈M . Then m ≡ m′.

Proof. By idempotence, m+ (m+m′) = m′ + (m+m′).

50

CHAPTER 5

MONOIDS, COMONOIDS, AND BIMONOIDS

We now consider K-algebras, which are monoids in K−Mod. We also define

K-coalgebras and K-bialgebras, which are related to K-algebras by categorical

duality. Once we have the required definitions and theorems in place, we use

these structures to define K-linear automata in the next chapter.

In this chapter, all semirings are commutative.

5.1 Monoids and K-algebras

We first recall the definition of an R-algebra for a commutative ring R.

Definition 5.1.1. Let R be a commutative ring. An R-algebra is a ring A along

with a ring homomorphism η : R → A such that η(R) is contained in the center

ofA. The homomorphism η is called the unit of theR-algebra. If η is an injection,

it is common to abuse notation and write R ⊆ A.

Example 5.1.1. The set of n × n matrices over R is an R-algebra. The unit map

sends r ∈ R to r · In, where In is the n× n identity matrix.

The map η defines an action of R on A via r . a = η(r)a. This means we can

view A as an R-module. Multiplication in A is then an R-bilinear map

A× A→ A. Therefore it corresponds to a unique R-linear map

µA : A⊗R A→ A

µA(a⊗R a′)→ aa′.

We have the following.

51

Lemma 5.1.1. An R-algebra is a monoid in the monoidal category of R-modules.

Proof. We must argue that the diagrams in Definition 2.2.3 are satisfied. The

associativity diagram is satisfied because multiplication inA is associative. That

η satisfies the unit diagram is straightforward from the definitions.

Since K−Mod is a monoidal category, we can apply the diagrams in Definition

2.2.3.

Definition 5.1.2. Let K be a commutative semiring. A K-algebra is a monoid in

K−Mod.

Example 5.1.2. Let K be a commutative semiring and Σ a finite alphabet. Let

KΣ∗ denote the set of all finite K-linear sums of words in Σ∗. Concatenation of

words can be extended K-linearly yielding an associative multiplication. This

structure forms a K-algebra with unit map η(k) = k · λ, where λ is the empty

word.

Example 5.1.3. LetK be a commutative semiring. The semiringK can be thought

of as a “K-algebra over itself” as follows. Multiplication in K defines a K-

linear map µK : K ⊗ K → K such that µK(k1 ⊗ k2) = k1k2. The map µK is an

isomorphism by Theorem 4.2.1.3. There is also a unit map ηK : K → K given

by ηK(k) = k for all k ∈ K.

In a symmetric monoidal category, the product of two monoids is a monoid.

Theorem 5.1.1. (Lemma 9.2.12 [24]) Let A,B be monoids in a symmetric monoidal

category C. The object A⊗B also has the structure of a monoid in C. Multiplication is

given by

µA⊗B = (µA ⊗ µB) ◦ (1A ⊗ σB,A ⊗ 1B).

52

Diagrammatically,

A⊗B ⊗ A⊗B
1A⊗σB,A⊗1A // A⊗ A⊗B ⊗B µA⊗µB // A⊗B.

The unit arrow is given by

ηA⊗B = ηA ⊗ ηB.

Remark 5.1.1. In [24], the above Lemma is actually proved for braided monoidal

categories. These are generalizations of symmetric monoidal categories in which

the isomorphism σA,B : A⊗B ∼= B⊗A is not required to satisfy σA,B ◦σB,A = 1A,

but rather a set of weaker conditions known as the hexagon conditions.

Corollary 5.1.1. Let A and B be K-algebras. Then A⊗ B is a K-algebra with multi-

plication defined on simple tensors a⊗ b, a′ ⊗ b′ ∈ A⊗B as

(a⊗ b) · (a′ ⊗ b′) = aa′ ⊗ bb′

and extended linearly to all of A⊗B. The unit map is the map

η : K → A⊗B

η(k) = 1⊗ k = k ⊗ 1.

We also define structure-preserving maps between K-algebras.

Definition 5.1.3. LetA,B be twoK-algebras. AK-algebra map is aK-linear map

f : A→ B satisfying

A⊗ A f⊗f //

µA

��

B ⊗B
µB

��
A

f // B

K
ηA

~~~~
~~

~~
~ ηB

  B
BB

BB
BB

B

A
f // B.

This is just the definition of a morphism of monoids (Definition 2.2.4) applied

to K−Mod.

53



5.2 Comonoids and K-coalgebras

Before defining comonoids, we recall the definitions of opposite categories, op-

posite functors, and inverse natural transformations.

Definition 5.2.1. Let C be a category. We define the opposite category of C, de-

noted Cop, as follows. The objects of Cop are the objects of C. For each arrow

f : a → b of C, there is an arrow f op : b → a in Cop. The composition of

f opgop = (gf)op exists in Cop precisely when gf exists in C.

Definition 5.2.2. Let C,D be categories and F : C → D a functor. The opposite

functor F op : Cop → Dop agrees with F on objects and sends an arrow gop to

(F (g))op.

Definition 5.2.3. LetA,B be categories, S, T functors fromA toB, and t : S → T

a natural isomorphism. The inverse of t, denoted t−1, is the natural transforma-

tion T → S defined as follows:

t−1 : T → S

t−1(a) = (t(a))−1

for all objects a of A.

Lemma 5.2.1. Let B = 〈B,⊗, e, a, l, r〉 be a (symmetric) monoidal category. Then

Bop = 〈Bop,⊗op, e, a−1, l−1, r−1〉 is also a (symmetric) monoidal category.

Proof. We are treating the inverse of an invertible arrow in B as an arrow in Bop.

The relevant diagrams are easy to verify.

Definition 5.2.4. Let C be category. A comonoid in C is a monoid in Cop.

Definition 5.2.5. A comonoid in K−Modop is called a K-coalgebra.

54



Multiplication in a comonoid is called comultiplication and is traditionally

denoted ∆. The unit of a comonoid is also known as the counit map and denoted

by ε. In a K-coalgebra C, ∆ is a K-linear map C → C ⊗ C and ε is a K-linear

map C → K. The comultiplication and counit satisfy the following diagrams,

known as the coassociativity and counit conditions:

C ⊗ C ⊗ C

C ⊗ C

∆⊗1C

77ppppppppppp
C ⊗ C

1C⊗∆
ggNNNNNNNNNNN

C
∆

ggOOOOOOOOOOOO ∆

77oooooooooooo

C
∆ //

1C

))
C ⊗ C ε⊗1C

1C⊗ε
+3 C.

These are simply the duals of the diagrams in Definition 2.2.3. Note that we

have omitted the associator isomorphism and identified K, C ⊗K, and K ⊗ C.

When performing calculations involving comultiplication, we sometimes

use the notation

∆(c) =
∑
i

c(1) ⊗ c(2)

to express how c is “split” into elements of C ⊗ C. Note that such a description

of ∆ requires the choice of a representative in the tensor product for each c ∈ C.

Example 5.2.1. Let K be the two-element idempotent semiring and Σ = {x, y}.

Let P be the set of all finite K-linear sums of elements of Σ∗ (cf. Example 5.1.2).

Note that we can treat elements of P as polynomials in noncommuting variables

x, y with coefficients in K (although multiplication in P is not needed to define

a K-coalgebra).

Consider the following comultiplications on P , defined on monomials and

55



extended linearly:

∆1(w) = w ⊗ w

∆2(w) =
∑

w1w2=w

w1 ⊗ w2.

Also consider the comultiplication defined as

∆3(g) = 1⊗ g + g ⊗ 1, for g ∈ {x, y}

and extended as an algebra map to all of P . That is, ∆3(pq) = ∆3(p)∆3(q) for all

p, q ∈ P . For example,

∆3(x)∆3(y) = (1⊗ x+ x⊗ 1)(1⊗ y + y ⊗ 1)

= 1⊗ xy + y ⊗ x+ x⊗ y + xy ⊗ 1.

Note that the product ∆3(x)∆3(y) takes place in the tensor product P⊗P . More-

over, we have two K-linear maps, ε1 and ε2, given by

ε1(p) = p(1, 1)

ε2(p) = p(0, 0)

for all p ∈ P . Then (P,∆1, ε1) is a K-coalgebra, as are (P,∆2, ε2) and (P,∆3, ε2).

Example 5.2.2. Let K be a commutative semiring. There is a K-coalgebra struc-

ture on K. Comultiplication is given by ∆K(1) = 1 ⊗ 1, extended K-linearly.

The counit εK is the identity map on K.

Let C and D be K-coalgebras. Since C and D are monoids in a symmetric

monoidal category, there is a tensor product structure on C ⊗D. The counit of

C ⊗D is εC ⊗ εD, and multiplication defined by the diagram

C ⊗D ∆C⊗∆D // C ⊗ C ⊗D ⊗D
1C⊗σC,D⊗1D// C ⊗D ⊗ C ⊗D.

56



This is just the multiplication and unit from Lemma 5.1.1 interpreted in an oppo-

site category. There are also structure-preserving maps for K-coalgebras, which

are just morphisms of monoids in K−Modop.

Definition 5.2.6. Let C and D be K-coalgebras. A K-coalgebra map is a K-linear

map g : C → D satisfying

C ⊗ C g⊗g // D ⊗D

C
g //

∆C

OO

D

∆D

OO K

C
g //

εC
>>~~~~~~~~

D.

εD
``BBBBBBBB

5.3 Bimonoids and K-bialgebras

We now define bimonoids, which are structures with “compatible” monoid and

comonoid structures.

Definition 5.3.1. Let C be a symmetric monoidal category. A bimonoid in C is a

comonoid in the category of monoids of C.

So a bimonoid B in a symmetric monoidal category C is a comonoid in

which the comultiplication and counit arrows are morphisms of monoids. An

equivalent definition of a bimonoid is a monoid in the category of comonoids of

C. Let B be a comonoid in the category of monoids of C. Let K denote the unit

object of C. To show that B is also a monoid in the category of comonoids of C,

we must show that µB and ηB are morphisms of comonoids.

Note that ∆B satisfies

B ⊗B
µB

��

∆B⊗∆B // B ⊗B ⊗B ⊗B
(µB⊗µB)◦(1B⊗σB,B⊗1B)

��
B

∆B // B ⊗B

57



since it is a morphism of monoids. Rotating this diagram 90◦ counterclockwise

and reassociating yields

B ⊗B ⊗B ⊗B µB⊗µB // B ⊗B

B ⊗B µB //

(1B⊗σB,B⊗1B)◦(∆B⊗∆B)

OO

B

∆B

OO

which shows that µB preserves comultiplication. Note the use of Lemma 5.1.1

to guarantee monoid and comonoid structures on B ⊗B.

Furthermore, εB is a morphism of monoids B → K. By definition, the fol-

lowing diagram commutes:

B ⊗B εB⊗εB//

µB

��

K ⊗K
µK

��
B

εB // K.

Rotating this diagram 90◦ counterclockwise and using the fact that

µK : K ⊗K → K is an isomorphism yields the diagram

K

B ⊗B

εB⊗εB
;;wwwwwwwww µB // B,

εB
``AAAAAAA

which shows that µB is a comonoid morphism B ⊗ B → B. Note that we are

treating the unit object K as a “monoid over itself”, which is a simple general-

ization of Example 5.1.3.

We must also show that ηB : K → B is a morphism of comonoids. Since

∆B : B → B ⊗B is a morphism of monoids, we have

K
ηB

~~~~
~~

~~
~~ ηB⊗ηB

$$H
HHHHHHHH

B
∆B // B ⊗B.

58

Rotating this diagram 90◦ counterclockwise and using the fact that

∆K : K → K ⊗K is an isomorphism yields the diagram

K ⊗K ηB⊗ηB// B ⊗B

K

∆K

OO

ηB // B.

∆B

OO

This shows that ηB preserves comultiplication. To see that ηB preserves the

counit, note that the diagram

K
ηB

~~}}
}}

}}
}

ηK

 A
AA

AA
AA

A

B
εB // K

commutes, since εB is a morphism of monoids. Rotating this diagram 90◦ coun-

terclockwise yields

K

K
ηB //

ηK

>>}}}}}}}}
B.

εB
``BBBBBBBB

Since ηK = εK , ηB is a morphism of comonoids.

Definition 5.3.2. AK-bialgebra is a bimonoid “in” K−Mod. That is, a comonoid

in the category of K-algebras, or a monoid in the category of K-coalgebras.

Let R be a commutative ring. In the literature, an R-bialgebra is frequently

defined as an R-module which is both an R-algebra and an R-coalgebra, which

satisfies the following diagrams:

B ⊗B µB //

∆B⊗∆B

��

B
∆B // B ⊗B

B ⊗B ⊗B ⊗B
1B⊗σB,B⊗1B // B ⊗B ⊗B ⊗B

µB⊗µB

OO

B ⊗B εB⊗εB//

µB

��

R⊗R ηB⊗ηB//

∼=
��

B ⊗B

B
εB // R

ηB // B

∆B

OO B
εB

 A
AA

AA
AA

A

R

ηB

??~~~~~~~ 1R // R.

59

Note the “self-duality” of the defining diagrams of a R-bialgebra: swapping ∆

for µ, ε for η, and reversing the direction of all arrows yields the same diagrams.

We have that the following conditions are equivalent:

1. B is an R-bialgebra,

2. µ : B ⊗B → B and η : R→ B are R-coalgebra maps,

3. ∆ : B → B ⊗B and ε : B → R are R-algebra maps.

This means that we could define a K-bialgebra as a K-semimodule with K-

linear maps satisfying the above diagrams. This is the definition of a K-

bialgebra used in [30]. When performing calculations, the following equational

definition of a K-bialgebra is useful:

∆(ab) = ∆(a)∆(b) ∆(1) = 1⊗ 1 ε(ab) = ε(a)ε(b) ε(1) = 1.

Example 5.3.1. Using the notation of Example 5.2.1, straightforward calculations

show that P with comultiplication ∆1 and counit ε1 is aK-bialgebra, as is P with

comultiplication ∆3 and counit ε2. Note that ∆2 does not satisfy ∆2(x)∆2(y) =

∆2(xy).

Example 5.3.2. Let M be a monoid and K a commutative semiring. Let K(M)

be the free K-semimodule on M . Define multiplication in K(M) by extending

multiplication in M K-linearly. Then K(M) is also a K-algebra with unit map

η(k) = k1M . This is known as the free K-algebra on M . There is a K-coalgebra

structure on K(M); define

∆(m) = m⊗m

ε(m) = 1

for m ∈ M and extend K-linearly to K(M). A straightforward calculation

shows that K(M) is a K-bialgebra.

60

Finally, we define structure-preserving maps for K-bialgebras.

Definition 5.3.3. LetB,B′ beK-bialgebras. AK-bialgebra map is aK-linear map

f : B → B′ which is both a K-algebra map and a K-coalgebra map.

61

CHAPTER 6

REPRESENTATIONS, AUTOMATA, AND LANGUAGES

In this chapter, we define K-linear automata as pointed, observable representa-

tions of K-algebras. We give the relation between a K-coalgebra structure on

inputs to K-linear automata and the K-algebra structure on functions defined

by K-linear automata, and describe how to run K-linear automata in parallel

using a K-bialgebra structure on the inputs. These results explain and extend

the similarities between the theory of automata and formal languages and the

theory of bialgebras which are the subjects of [5], [6], [12], and [11]. Further-

more, we show the role of comultiplication as a parameter, for multiplying both

languages and automata.

All semirings in this chapter are commutative.

6.1 K-algebra Representations and K-linear Automata

We treat elements of a K-algebra as inputs to an automaton. The transitions

of the automaton correspond to an action of the input K-algebra on a K-

semimodule, elements of which are the states of the automaton. These actions

are just monoid actions in the monoidal category K−Mod (Definition 2.2.6).

Definition 6.1.1. LetA be aK-algebra andM be aK-semimodule. A right action

of A on M is a K-linear map M ⊗ A→M , denoted /, satisfying

m / (aa′) = (m / a) / a′

m / 1 = m

62

for all a, a′ ∈ A,m ∈M .

Left actions are defined analogously as K-linear maps . : A⊗M →M .

Remark 6.1.1. Similar to the case for monoids in Set, a right action of A on M is

equivalent to a K-linear map A → Endr(M), where Endr(M) is the right endo-

morphism semiring of M . An analogous statement is true for left actions.

To define aK-linear automaton, we also need a start state and an observation

function (cf. Definition 2.1.7).

Definition 6.1.2. A right K-linear automaton A = (M,A, s, /,Ω) consists of the

following:

1. A K-algebra A, called the input K-algebra,

2. A K-semimodule M , called the state semimodule,

3. A right action / of A on M ,

4. An element s ∈M , called the start vector,

5. A K-linear map Ω : M → K, called the observation function.

Remark 6.1.2. Equivalently, we could have defined a K-linear start function

α : K →M

and set s = α(1). This is useful in Chapter 7 below, but can add unnecessary

symbols to proofs. We use both variants, depending on the situation.

Left K-linear automata are defined similarly using a left action .. In the

sequel, we give only “one side” of a theorem or definition involving K-linear

automata; the other follows mutatis mutandis.

63

// GFED@ABCs1 x
//

x�� GFED@ABC?>=<89:;s2

y��

Figure 6.1: A Nondeterministic automaton to encode.

Example 6.1.1. We provide a translation of the nondeterministic automaton in

Figure 6.1 into the framework of K-algebra representations.

Let K be the two-element idempotent semiring. Let M be the free K-

semimodule on the set {s1, s2} and let P the K-algebra of polynomials over

noncommuting variables {x, y} with coefficients from K. Define a right action

of the generators of P (as a K-algebra) on M as follows:

[
k1 k2

]
/ x =

[
k1 k2

] 1 1

0 0

[
k1 k2

]
/ y =

[
k1 k2

] 0 0

1 0

and extend algebraically to an action of P on M . The start vector is[

1 0

]
and the observation function is

Ω

([
k1 k2

])
=

[
k1 k2

] 0

1

 .
Intuitively, this right K-linear automaton computes by beginning in the start

state and reading the input from left to right. Each letter it reads in causes the

automaton to change state; when the input has been consumed, the state is ob-

served using the observation function Ω. Note that this could also be viewed as

a weighted automaton; the difference is that we use the transition matrices to

64

define a right action of P on a free K-semimodule, instead of a right action of

{x, y}∗.

This automaton can also be encoded as a left K-linear automaton, which

begins in the “final” state, reads the input backward from right to left, and then

observes whether or not the start state has been reached. In this case, P acts on

the freeK-semimodule on the set {s1, s2} by left multiplication. This means that

the states must be written as column vectors. The start state is 1

0

and the observation function is

Ω

 k1

k2

 =

[
0 1

] k1

k2

 .
Such automata determine elements of Lin(A,K), as in [12] (cf. Definition 2.1.8).

Definition 6.1.3. Let A = (M,A, s, /,Ω) be a right K-linear automaton. The

language accepted by A is the function ρA : A→ K such that

ρA(a) = Ω(s / a).

Lemma 6.1.1. The function ρA is an element of Lin(A,K).

Proof. Immediate since / and Ω are K-linear maps.

Definition 6.1.4. Let A and B be right K-linear automata. If ρA = ρB, then A

and B are said to be equivalent.

Functions between automata which preserve the language accepted are central

to the theory of automata; such functions have K-linear analogs.

65

Definition 6.1.5. Let A = (M,A, sA, /A,ΩA) and B = (N,A, sB, /B,ΩB) be right

K-linear automata. A morphism of right K-linear automata from A to B is a K-

linear map φ : M → N such that

φ(sA) = sB (6.1)

φ(m /A a) = φ(m) /B a (6.2)

ΩA(m) = ΩB(φ(m)) (6.3)

for all m ∈M,n ∈ N, a ∈ A.

Remark 6.1.3. Let V and W be R-modules. In the theory of R-algebras, an R-

linear map f : V → W which satisfies (6.2) is known as a linear intertwiner. This

is just an instance of a right action morphism in the category K−Mod.

Theorem 6.1.1. Let A = (M,A, sA, /A,ΩA) and B = (N,A, sB, /B,ΩB) be right K-

linear automata, and let φ : A → B be a morphism of right K-linear automata. Then

A and B are equivalent.

Proof. Essentially the same as the proof of Theorem 2.1.1.

A simple calculation proves the following lemma.

Lemma 6.1.2. Let A,B, C be right K-linear automata and φ : A → B, φ′ : B → C be

morphisms of right K-linear automata. Then φ′ ◦ φ : A → C is a morphism of right

K-linear automata.

Furthermore, for a right K-linear automaton A, the identity map of the un-

derlying K-semimodule of A is a morphism of right K-linear automata. We

therefore have the following.

66

Lemma 6.1.3. For a given commutative semiring K, the collection of right K-linear

automata and morphisms thereof forms a category.

Let A be a K-algebra. Elements of Lin(A,K) can be added and scaled by K,

since Lin(A,K) is a K-semimodule by Lemma 3.3.1. Moreover, given right K-

linear automataA and B, there is a right K-linear automaton accepting ρA+ ρB,

and given k ∈ K, there is a right K-linear automaton accepting kρA.

Definition 6.1.6. Let A = (M,A, sA, /A,ΩA) and B = (N,A, sB, /B,ΩB) be right

K-linear automata. The direct sum of A and B is the right K-linear automaton

A⊕ B = (M ⊕N,A, (sA, sB), /A⊕B,ΩA ⊕ ΩB),

where

/A⊕B : (M ⊕N)⊗ A→M ⊕N,

/A⊕B((m,n)⊗ a) = ((m /A a), (n /B a))

and

ΩA⊕B : M ⊕N → K,

ΩA⊕B(m,n) = ΩA(m) + ΩB(n).

The verification that /A⊕B is an action of A on M ⊕N is straightforward.

Theorem 6.1.2. Let A = (M,A, sA, /A,ΩA) and (N,A, sB, /B,ΩB) be right K-linear

automata. Then ρA⊕B(a) = ρA(a) + ρB(a) for all a ∈ A.

67

Proof. For any a ∈ A,

ρA⊕B(a) = ΩA⊕B((sA, sB) /A⊕B a)

= ΩA⊕B(sA /A a, sB /B a)

= ΩA(sA /A a) + ΩB(sB /B a)

= ρA(a) + ρB(a).

Theorem 6.1.3. LetA = (M,A, s, /,Ω) be a rightK-linear automaton, and let k ∈ K.

Then kρA = ρA′ , where A′ = (M,A, ks, /,Ω).

Proof. For any a ∈ A, ρA′ = Ω(ks / a) = kΩ(s / a) = kρA by linearity.

Algebra maps can be used to translate the input of an automaton.

Definition 6.1.7. Let A,A′ be K-algebras and f : A → A′ a K-algebra map.

Suppose A′ acts on a K-semimodule M . Then A also acts on M according to the

formula

m / a = m / f(a)

for a ∈ A,m ∈M . This is known as the pullback of the action of A′.

Automata theorists will recognize pullbacks as the main ingredient in the proof

that regular languages are closed under inverse homomorphisms.

6.2 K-coalgebras and Formal Languages

Let C be a K-coalgebra. By Lemma 3.3.1, Lin(C,K) is a K-semimodule with the

operations of pointwise addition and scalar multiplication. It is a standard fact

68

that the coalgebra structure of C defines an algebra structure on Lin(C,K).

Definition 6.2.1. Let (C,∆, ε) be a K-coalgebra and f, g ∈ Lin(C,K). The con-

volution product of f and g, denoted f ∗ g, is the element of Lin(C,K) defined

by

f ∗ g = µK ◦ (f ⊗ g) ◦∆

(recall that µK denotes multiplication in K).

Lemma 6.2.1. Let (C,∆, ε) be a K-coalgebra. There is a K-algebra structure on

Lin(C,K) with multiplication given by the convolution product and unit

η : K → C

η(k) = kε.

In particular, the multiplicative identity is ε.

Proof. The operation ∗ is associative because ∆ is coassociative:

f ∗ (g ∗ h) = µK(f ⊗ (µK(g ⊗ h))) ◦ ((1⊗∆) ◦∆)

(f ∗ g) ∗ h = µK((µK(f ⊗ g))⊗ h) ◦ ((∆⊗ 1) ◦∆)

and coassociativity of ∆ is exactly ((1⊗∆) ◦∆) = ((∆⊗ 1) ◦∆). The rest of the

K-algebra requirements follow immediately from the definitions.

The relation between K-coalgebras and formal languages is as follows. Let

K be the two-element idempotent semiring and let P be the set of polynomials

over noncommuting variables {x, y} with coefficients in K. Note that an ele-

ment of Lin(P,K) is completely determined by its values on monomials, which

we view as words over {x, y}. Thus there is a one-to-one correspondence be-

tween subsets of {x, y}∗ and elements of Lin(P,K).

69

Recall the comultiplications and counits on P from Example 5.2.1:

∆1(w) = w ⊗ w

∆2(w) =
∑

w1w2=w

w1 ⊗ w2

defined on monomials w and extended K-linearly to all of P . The third comul-

tiplication is

∆3(x) = 1⊗ x+ x⊗ 1

∆3(y) = 1⊗ y + y ⊗ 1

extended as an algebra map to all of P . The counit maps are

ε1(p) = p(1, 1)

ε2(p) = p(0, 0)

for all p ∈ P . Then (P,∆1, ε1) is a K-coalgebra as are (P,∆2, ε2) and (P,∆3, ε2).

A simple verification shows that the K-algebra on Lin(P,K) determined by

the K-coalgebra (P,∆1, ε1) corresponds to language intersection, with the mul-

tiplicative identity corresponding to the language denoted by (x + y)∗. The K-

coalgebra (P,∆2, ε2) corresponds to language concatenation with identity {λ},

where λ is the empty word. Finally, the K-coalgebra (P,∆3, ε2) corresponds to

the shuffle product of languages, again with identity {λ} (see [5] and also [24],

Proposition 5.1.4). In each case, addition in the K-algebra on Lin(P,K) corre-

sponds to the union of two languages.

We conclude this section with an example calculation. Let f ∈ Lin(P,K)

correspond to the language denoted by x∗, and let g ∈ Lin(P,K) correspond to

the language denoted by y∗. The following shows that yx ∈ f ∗ g, where the

70

comultiplication is ∆3:

µk ◦ f ⊗ g ◦∆3(xy) = µk ◦ f ⊗ g(1⊗ xy + y ⊗ x+ x⊗ y + xy ⊗ 1)

= µK(f(1)⊗ g(xy) + f(y)⊗ g(x) + f(x)⊗ g(y) + f(xy)⊗ g(1))

= µK(1⊗ 0 + 0⊗ 0 + 1⊗ 1 + 0⊗ 1)

= 0 + 0 + 1 + 0

= 1.

6.3 K-bialgebras, Automata, and Languages

A K-linear automaton takes elements of a K-algebra A input. These automata

define elements of Lin(A,K). Moreover, a K-coalgebra structure on A defines a

multiplication on Lin(A,K). We now discuss the relation between these prod-

ucts on Lin(A,K) and K-linear automata.

We first treat the case in which A is both a K-algebra and a K-coalgebra,

without assuming that A is a K-bialgebra. Let A = (M,A, sA, /A,ΩA) and

B = (N,A, sB, /B,ΩB) be K-linear automata. Applying the convolution product

to ρA and ρB yields

ρA ∗ ρB(a) = µK ◦ (
∑
i

ρA(sA / a(1))⊗ ρB(sB / a(2))).

That is, the convolution product determines a formula with comultiplication

as a parameter. Different choices of comultiplication yield different products of

languages, as discussed in Section 6.2. When the languages are given by K-

linear automata, we can use this formula to obtain a succinct expression for the

product of the two languages.

71

Of course, it would be even better if we could get a K-linear automaton ac-

cepting the product of the two languages. When the input forms a K-bialgebra,

there is an easy way to construct such an automaton, which relies on a construc-

tion from the theory of bialgebras. In fact, this construction is an instance of a

general theorem about categories of representations of a bimonoid.

We emphasize that a K-bialgebra structure is not necessary for a K-linear

automaton accepting ρA ∗ ρB to exist. Consider ∆2 and ∆3 as defined in Section

6.2. They agree on x and y, which generate P as a K-algebra. Therefore at

most one of them can be a K-algebra map; ∆3 is a K-algebra map by definition.

Hence ∆2 is not part of a K-bialgebra and so we cannot use the construction to

get aK-linear automaton “accepting” the concatenation of two languages. Such

a K-linear automaton exists, of course, but it is not given by this construction.

It is a theorem that a category of representations of a bimonoid is itself a

monoidal category. The proof, in full categorical generality, can be found in

Chapter 15 of [28]. A proof for the special case of a category of representations

of a bialgebra over a field can be found in Example 9.1.3 of [24]. We provide the

interesting part of the proof for the special case of K-bialgebras.

Lemma 6.3.1. Let B be a K-bialgebra which acts on K-semimodules M and N from

the right. Then B acts on M ⊗N from the right according to the diagram

M ⊗N ⊗B 1⊗∆B //M ⊗N ⊗B ⊗B 1⊗σ⊗1//M ⊗B ⊗N ⊗B/M⊗/N//M ⊗N.

Proof. It is easy to see that the action of B on M ⊗N is a K-linear map such that

(m⊗ n) /M⊗N 1 = m⊗ n. To see that

(m⊗ n) /M⊗N ab = ((m⊗ n) /M⊗N b) /M⊗N a,

72

we work with the equational definition of the action, which is

(m⊗ n) /M⊗N c =
∑
i

m /M c(1) ⊗ n /N c(2).

We have

(m⊗ n) /M⊗N (ab) =
∑
i

m /M (ab)(1) ⊗ n /N (ab)(2)

=
∑
i

m /M a(1)b(1) ⊗ n /N a(2)b(2)

= ((m⊗ n) /M⊗N b) /M⊗N a.

Definition 6.3.1. Let A = (M,B, sA, /A,ΩA) and B = (N,B, sB, /B,ΩB) be right

K-linear automata. The tensor product ofA and B, denotedA⊗B, is the automa-

ton (M ⊗N,B, sA ⊗ sB, /M⊗N ,ΩA ⊗ ΩB).

Remark 6.3.1. Note that since K ⊗ K ∼= K, ΩM ⊗ ΩN : M ⊗ N → K. Similarly,

if we view the start states as start functions K → M , K → N , then the start

function of A⊗ B has domain K.

Theorem 6.3.1. Let A = (M,B, sA, /A,ΩA) and B = (N,B, sB, /B,ΩB) be right

K-linear automata. Then ρA⊗B = ρA ∗ ρB.

Proof. For any b ∈ B,

ρA⊗B(b) = ΩA⊗B((sA ⊗ sB) /A⊗B b)

= ΩA⊗B

(∑
i

(sA /A b(1) ⊗ sB /B b(2))

)
=
∑
i

ΩA(sA /A b(1))ΩB(sB /B b(2))

= ρA ∗ ρB(b).

73

This construction also appears in automata theory. It is used to run two au-

tomata in parallel.

Example 6.3.1. The automata in Figure 6.2 accept the languages denoted by (xx)∗

and (yy)∗, respectively. We provide the tensor product of the K-linear encod-

ings of these automata, using the comultiplication ∆3 from Example 5.2.1. We

assume that both automata have input K-algebra K{x, y}∗; the action of y on

the K-semimodule of the first automaton is given by the 2 × 2 matrix of 0’s, as

is the action of x on the K-semimodule of the second.

The K-semimodule of the tensor product is the free K-semimodule on the

set {s1 ⊗ t1, s1 ⊗ t2, s2 ⊗ t1, s2 ⊗ t2}, by Lemma 4.2.1.6. The start vector is[
1 0 0 0

]
,

the right x, y actions are given by

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

,

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

// GFED@ABC?>=<89:;s1 x
// GFED@ABCs2

x��
//GFED@ABC?>=<89:;t1 y

//GFED@ABCt2
y��

Figure 6.2: Nondeterministic automata.

74

respectively, and the observation function is given by

[
k1 k2 k3 k4

]
·

1

0

0

0

.

Using the comultiplication ∆1 instead of ∆3 would yield an automaton accept-

ing the intersection of these two languages.

We can also multiply morphisms of K-linear automata.

Theorem 6.3.2. Let B be a K-bialgebra. Let A = (M,B, sA, /A,ΩA),

B = (N,B, sB, /B,ΩB), C = (M ′, B, sC, /C,ΩC), and D = (N ′, B, sD, /D,ΩD) be

right K-linear automata. Let f : A → C and g : B → D be morphisms of right

K-linear automata. Then

f ⊗ g : M ⊗N →M ′ ⊗N ′

is a morphism of right K-linear automata

A⊗ B → C ⊗D.

Proof. The K-linear map f ⊗ g takes the start state of A ⊗ B to the start state of

C ⊗ D:

(f ⊗ g)(sA ⊗ sB) = f(sA)⊗ g(sB) = sC ⊗ sD.

75

It also satisfies the condition on the observation functions of A⊗ B and C ⊗ D:

ΩA⊗B(m⊗ n) = ΩA(m)⊗ ΩB(n)

= ΩC(f(m))⊗ ΩD(g(n))

= ΩC⊗D(f(m)⊗ g(n))

= ΩC⊗D((f ⊗ g)(m⊗ n)).

Finally, we show that f ⊗ g commutes with the actions of A⊗ B and C ⊗ D:

(f ⊗ g)((m⊗ n) /A⊗B b) =(f ⊗ g)

(∑
i

(m /A b(1) ⊗ n /B b(2))

)
=
∑
i

f(m /A b(1))⊗ g(n /B b(2))

=
∑
i

f(m) /C b(1) ⊗ g(n) /D b(2)

=((f ⊗ g)(m⊗ n)) /C⊗D b.

There is also a ”unit” K-linear automaton, which accepts the counit of B.

Definition 6.3.2. Let B be a K-bialgebra. The unit K-linear automaton is the

automaton (K,B, 1, /, idK), where

/ : K ⊗B → K

k ⊗ b 7→ kε(b).

It accepts the multiplicative identity for the convolution product, i.e., the counit

of B.

Proof. The counit satisfies ε(bb′) = ε(b)ε(b′).

76

The category of representations of B is a monoidal category. Since every

K-linear automaton with input K-bialgebra B is just a representation of B en-

dowed with a start state and and observation function, the category of K-linear

automata with input K-bialgebra B is also a monoidal category.

77

CHAPTER 7

COMPLETENESS

In this chapter, we focus on the relation between K-linear automata and de-

terministic automata. In particular, we treat the notion of determinization of

automata as a functor. In fact, this functor is part of an adjunction between cer-

tain categories of K-linear automata and deterministic automata. This allows

us to transfer automata and morphisms from one category to the other. With

this adjunction, we can prove a completeness theorem for a proof system for

equivalence of K-linear automata. The only “rules of inference” in this proof

system are morphisms of K-linear automata.

All automata (deterministic and K-linear) in the chapter are right. As usual,

similar theorems hold for left automata. Moreover, in this chapter, automata

have start functions rather than start states (cf. Remark 6.1.2).

7.1 Why Determinize?

To produce a witness to the equality of two K-linear automata, it is not neces-

sary to determinize. Instead, we could use the same procedure used in the proof

of Theorem 2.3.2.

Definition 7.1.1. A K-linear observable representation is a K-linear automaton

without a start function.

Theorem 7.1.1. Let A be a K-algebra. Then Lin(A,K) has a K-linear observable

representation structure.

78

Proof. By 3.3.1, Lin(A,K) is a K-semimodule. For f ∈ Lin(A,K), the map

ΩF(f) = f(1)

is a K-linear map Lin(A,K)→ K.

We define a right action of A on Lin(A,K) as follows. Let a ∈ A and

f ∈ Lin(A,K). Then

(f /F a)(x) = f(ax)

for all x ∈ A. The proof that /F is a K-linear map Lin(A,K)⊗ A→ Lin(A,K) is

straightforward. The proof that /F is an action is essentially the same as Lemma

2.3.1.

Definition 7.1.2. A morphism of K-linear observable representations is defined as a

morphism of K-linear automata, without the condition on the start states.

Definition 7.1.3. LetA = (A,M, /A,ΩA) be aK-linear observable representation

and m ∈M . The language accepted by m, denoted Lm, is the K-linear map

Lm : A→ K

Lm(a) = ΩA(m /A a).

Theorem 7.1.2. The K-linear observable representation on Lin(A,K) is a final object

in the category of K-linear observable representations.

Proof. Let A = (A,M, /A,ΩA) be a K-linear observable representation and

F = (A,Lin(A,K), /F ,ΩF) be defined as in Theorem 7.1.1. We claim that the

map

g : M → Lin(A,K)

g(m) = Lm

79

is the unique morphism of K-linear observable representations A → F .

The proof is essentially the same as the proof of Lemma 2.3.2, plus an easy

verification that g is a K-linear map.

Let A and B be two equivalent K-linear automata. A witness to the equiva-

lence of A and B is given by the following sequence of K-linear automata and

morphisms:

A
g // Lin(A,K) B,g′oo

where g and g′ are the unique morphisms described in Theorem 7.1.2. Note that

we must define a K-linear automaton structure on Lin(A,K) by declaring the

start function to map 1 ∈ K to the language accepted by A, which is the same

as the language accepted by B.

We can even eliminate inaccessible states, using the following lemma.

Lemma 7.1.1. Let A be a K-algebra, M a K-semimodule, and / a right action of A on

M . Fix an element m ∈ M . Then the set mA = {m′ |m′ = m / a for some a ∈ A} is

a subsemimodule of M .

Proof. Let n, n′ ∈ mA. Then there must be a, a′ ∈ A such that n = m / a and

n′ = m / a′. Then (n + n′) = m / (a + a′), so mA is closed under addition.

Furthermore, if n = m / a, then kn = m / ka, so mA is closed under scalar

multiplication.

Nonetheless, we do determinize below, using the forgetful functor from

K−Mod to Set. When K is the two-element idempotent semiring, this functor

corresponds to determinization via the familiar subset construction. For other

80

K, it is possible for the forgetful functor to take aK-linear automaton whose un-

derlying K-semimodule is the free K-semimodule on a finite set X and return

a deterministic automaton with infinitely many states. This is not surprising; if

the range of the language accepted by a deterministic automaton D is infinite,

then D must have infinitely many states. Even for K the two-element idempo-

tent semiring there are nondeterministic automata with n states such that any

equivalent deterministic automaton requires a number of states exponential in

n. In other words, a K-semimodule structure can be used to reduce the space

needed to describe the states of an automaton significantly.

However, there are some disadvantages to K-linear automata. For exam-

ple, there might not be a nice way to describe an arbitrary K-semimodule, in

particular, Lin(A,K). The completeness proof below uses a free functor after

determinizing. Free K-semimodules do have nice presentations (if K does),

particularly free K-semimodules on finite sets. Moreover, maps between such

K-semimodules can be described with matrices. In fact, in certain cases, the

witnesses produced below can be verified in polynomial time.

Furthermore, when K is the two-element idempotent semiring, the proof

system below can be used as a proof system for the equivalence of nondetermin-

istic finite automata. It is well-known that this is a PSPACE-complete problem.

So for any proof system, there must be equivalences whose shortest proof is ex-

ponentially long, unless PSPACE = NP . In general, it seems likely that any

way of producing witnessing sequences must in the worst case either produce

very large sequences, or sequences which are not efficiently verifiable.

81

7.2 Determinization as Forgetful Functor

Let A = (M,A, α, /,Ω) be a K-linear automaton. We wish to construct a deter-

ministic automaton D which is a “deterministic version” of A. However, this

requires associating to the input K-algebra of A a monoid in Set. There is also a

concern regarding the types of the two observation functions. In certain cases,

these difficulties can be overcome using the notion of an adjunction between cat-

egories. There are many equivalent definitions of adjunctions used in practice.

We recall the one best suited to our purposes.

Definition 7.2.1. Let A and D be categories, F a functor from D to A, and U a

functor from A to D. An adjunction from D to A is a bijection ψ which assigns to

each arrow f : F (D) → A of A an arrow ψf : D → U(A) of D, called the right

adjunct of f, such that

ψ(f ◦ Fh) = (ψf) ◦ h,

ψ(k ◦ f) = Uk ◦ (ψf)

holds for all f and all arrows h : D′ → D and k : A→ A′. Equivalently, for every

arrow g : D → U(A),

ψ−1(gh) = ψ−1g ◦ (Fh),

ψ−1(Uk ◦ g) = k ◦ (ψ−1g).

Example 7.2.1. Let U ′ be the forgetful functor from K-Mod to Set and F ′ the

corresponding free functor that takes a set X to the free K-semimodule on X .

Let M be a K-semimodule. The adjunction θ from Set to K-Mod takes as input

a K-linear map φ : F ′(X) → M and returns the set map X → U ′(M) obtained

by restricting φ to X .

82

Remark 7.2.1. We use the notation of Example 7.2.1 throughout the sequel,

namely, F ′, U ′, and θ.

Example 7.2.2. Let M be a monoid in Set and K(M) be the free K-algebra on

M as defined in Example 5.3.2. There is an adjunction between the category of

monoids in Set and the category of K-algebras. The forgetful functor takes a

K-algebra A and forgets the K-semimodule structure.

Our goal is to construct a “determinizing” functor from a category of

K-linear automata to a category of deterministic automata, and a “free

K-linear” functor in the opposite direction. We then wish to show that these

two functors are components of an adjunction. In order for this to work nicely,

we make the following assumptions about the inputs.

1. The inputK-algebra of theK-linear automaton isK(I), the freeK-algebra

on a fixed monoid I .

2. The input monoid of the deterministic automaton is I and the set of obser-

vations of the deterministic automaton is the underlying set of K.

When considering start functions, we treat K as F ′(?). That is, we treat K as the

free K-semimodule on a one-element set.

Let A be a category of K-linear automata and morphisms of K-linear au-

tomata, satisfying assumption 1, and let D be a category of deterministic au-

tomata and morphisms of deterministic automata satisfying assumption 2. We

now define a functor U from A to D.

On K-linear automata, U behaves as follows. Given a K-linear automaton

83

A = (M,K(I), α, /,Ω),

U(A) = (U ′(M), I, θ(α), /′, U ′(Ω), U ′(K)),

where /′ is defined as follows. The action M /K(I) is equivalent to a K-algebra

map

K(I)→ Endr(M).

Restricting this action to I and forgetting the K-semimodule structure on M

yields a monoid homomorphism /′ : I → Endr(U ′(M)).

We now define U on arrows of A. Let A = (M,K(I), αA, /A,ΩA) and

B = (N,K(I), αB, /B,ΩB) be K-linear automata. A morphism of K-linear au-

tomata φ : A → B is, in particular, a K-linear map M → N . Define U(φ) to be

the underlying set map U ′(φ). To show that U takes arrows of A to arrows of D,

we must show that the commutativity of

F ′(?)
αA //

αB
""E

EEEEEEE M

φ

��

M
/A //

φ

��

M

φ

��

M
ΩA //

φ

��

K

N N /B
// N N

ΩB

>>~~~~~~~~

implies the commutativity of

?
θ(αA)//

θ(αB) ""D
DD

DD
DD

DD U ′(M)

U ′(φ)
��

U ′(M)
/′A //

U ′(φ)
��

U ′(M)

U ′(φ)
��

U ′(M)
U ′(ΩA)//

U ′(φ)
��

U(K)

U ′(N) U ′(N)
/′B

// U ′(N) U ′(N).
U ′(ΩB)

::uuuuuuuuu

The transition and observation diagrams commute because the functor U ′ takes

commutative diagrams to commutative diagrams. To show that the start func-

tion diagram commutes, note that

θ(φ ◦ αA) = U ′(φ) ◦ θ(αA)

since θ is an adjunction. Since αB = φ ◦ αA, we have θ(αB) = U ′(φ) ◦ θ(αA).

84

Theorem 7.2.1. The function U is a functor from A to D.

Proof. We have given the action of U on objects and arrows of A. It remains to

show that

U(1A) = 1U(A),

U(φ′ ◦ φ) = U(φ′) ◦ U(φ).

This is the case because U is the restriction of the functor U ′ to K-linear maps

which are also morphisms of K-linear automata.

The following theorem follows easily from the definitions.

Theorem 7.2.2. Let A be a K-linear automaton. Then θ(ρA) = ρU(A).

7.3 Free K-linear Automata

We now define a functor F : D→ A. This functor is used implicitly when using

matrices to encode a deterministic automaton with finitely many states.

Given a deterministic automaton D = (S, I, α, /,Ω, U ′(K)), the free K-linear

automaton F (D) is

(F ′(S), K(I), F ′(α), /′, θ−1(Ω))

where /′ is defined as follows. For each i ∈ I , apply F ′ to the function

s 7→ s / i.

This yields a map from I to Endr(F ′(S)), which has a unique extension to a

K-algebra map K(I)→ Endr(F ′(S)).

85

Let D = (S, I, αD, /D,ΩD, U
′(K)) and E = (T, I, αE, /E,ΩE, U

′(K)) be de-

terministic automata and f a morphism D → E. Define F (f) = F ′(f); we

must show that F ′(f) : F ′(S) → F ′(T) is a morphism of K-linear automata

F (D) → F (E). Dual to the determinizing case, it is easy to see that F ′(f) sat-

isfies the necessary diagrams for the transition and input functions. We must

show that

θ−1(ΩD) = θ−1(ΩE) ◦ F ′(f).

This follows from the equations θ−1(ΩE ◦ f) = θ−1(ΩE) ◦ F ′(f) and

ΩE ◦ f = ΩD.

Theorem 7.3.1. The function F defined above is a functor from D to A.

Proof. Similar to the proof of Theorem 7.2.1.

7.4 Adjunctions Between Categories of Automata

We now show that the functors F and U defined above are related by an ad-

junction. Let D = (S, I, αD, /D,ΩD, U
′(K)) be a deterministic automaton and

A = (M,K(I), αA, /A,ΩA) a K-linear automaton. We must find a bijection

ψ : A(F (D), A)→ D(D,U(A))

such that the defining conditions of an adjunction are satisfied. We claim that

the desired ψ is a restriction of the adjunction between K−Mod and Set.

Lemma 7.4.1. Let D = (S, I, αD, /D,ΩD, U
′(K)) be a deterministic automaton,

A = (M,K(I), αA, /A,ΩA) a K-linear automaton, and φ a morphism of K-linear

automata F (D)→ A. Then

ψ(φ) = φ|S : D → U(A)

86

is a morphism of deterministic automata D → U(A).

Proof. By definition of F and U and the fact that φ is a K-linear automaton mor-

phism, the following diagrams commute:

F ′(?)
F ′(αD)//

αA
$$I

IIIIIIII
F ′(S)

φ

��

F ′(S)
/′D //

φ

��

F ′(S)

φ

��

F ′(S)
θ−1(ΩD) //

φ

��

K

M M /A
//M M.

ΩA

77oooooooooooooo

To show that ψ(f) is a morphism of deterministic automata, we must show the

commutativity of

?
αD //

θ(αA) ""D
DD

DD
DD

DD S

ψ(φ)

��

S
/D //

ψ(φ)

��

S

ψ(φ)

��

S
ΩD //

ψ(φ)

��

U ′(K)

U ′(M) U ′(M)
/′A

// U ′(M) U ′(M).
U ′(ΩA)

99ttttttttt

This follows readily from the definitions of the functions involved.

Note that ψ(φ) = θ(φ), when φ is considered as a K-linear map.

Lemma 7.4.2. Let D = (S, I, αD, /D,ΩD, U
′(K)) be a deterministic automaton,

A = (M,K(I), αA, /A,ΩA) a K-linear automaton, and f a morphism of deterministic

automata D → U(A). Then

ψ−1(f) = F (D)→ A,

the K-linear extension of f , is a morphism of K-linear automata F (D)→ A.

Proof. Let φ = ψ−1(f). As in Lemma 7.4.1, it is easy to see that the commutativity

of

?
αD //

θ(αA) ""D
DD

DD
DD

DD S

f

��

S
/D //

f

��

S

f

��

S
ΩD //

f

��

U ′(K)

U ′(M) U ′(M)
/′A

// U ′(M) U ′(M)
U ′(ΩA)

::ttttttttt

87

implies the commutativity of

F ′(?)
F ′(αD)//

αA
$$I

IIIIIIII
F ′(S)

φ

��

F ′(S)
/′D //

φ

��

F ′(S)

φ

��

F ′(S)
θ−1(ΩD) //

φ

��

K

M M /A
//M M.

ΩA

77oooooooooooooo

Theorem 7.4.1. The function ψ is an adjunction from D to A.

Proof. Lemmas 7.4.1 and 7.4.2 imply that ψ is a bijection between A(F (D), A)

and D(D,U(A)). Furthermore, ψ is the restriction of the adjunction between

K−Mod and Set to K-linear maps which are also morphisms of K-linear au-

tomata. For all arrows k : A → A′ in A and h : D′ → D in D, we have Uk = U ′k

and Fh = F ′h. Therefore

ψ(φ ◦ Fh) = ψφ ◦ h,

ψ(k ◦ φ) = Uk ◦ ψφ

for all arrows φ : F (D)→ A.

7.5 Completeness

By Theorem 6.1.1, morphisms of K-linear automata preserve the language ac-

cepted. This can be thought of as a soundness proof for a proof system for

equivalence of K-linear automata in which a proof consists of a sequence of K-

linear automata and morphisms between them. We now show that given any

two equivalent K-linear automata A and B, we can find such a sequence. In

other words, the aforementioned proof system is complete.

88

Theorem 7.5.1. Let A be a K-linear automaton. We have the following sequence of

K-linear automata and morphisms:

A F (U(A))εoo F (U(A)′)
F (i)oo F (m) // F (M(U(A)′))

Proof. The morphism from F (U(A)) to A is the counit of the adjunction ψ be-

tween A and D (Theorem 7.4.1). The remainder of the sequence follows from

Theorem 2.3.2 and the functor F . The deterministic automaton U(A)′ is the

accessible subautomaton of U(A) and i is the inclusion of U(A)′ into U(A).

The morphism of deterministic automata m is the morphism from U(A)′ to

M(U(A)′), the minimization of U(A)′.

Remark 7.5.1. The above sequence can be shortened since ε ◦F (i) is a morphism

from F (U(A)′) to A.

Corollary 7.5.1. Let A and B be equivalent K-linear automata. There is a sequence of

K-linear automata and morphisms which witnesses the equivalence.

Proof. By Theorem 7.2.2, U(A) and U(B) are equivalent deterministic automata,

therefore have the same minimization. Applying Theorem 7.5.1 to A and B

yields sequences with the same endpoint.

Remark 7.5.2. Theorem 7.5.1 also holds for weighted automata over an arbitrary

semiring S, with some slight modifications. In the weighted case, we do not

have an input K-algebra. Instead, to each letter of a finite alphabet Σ, there

corresponds an S-linear map M → M , where M is a free (right or left) S-

semimodule on a finite set. In this case, the determinization and free functors

do not have to change the type of the inputs; both weighted automata and de-

terministic automata take elements of Σ∗ as inputs.

89

In the next chapter, we discuss the complexity of constructing such witness-

ing sequences. We also use these sequences as the basis for a proof system for

the equational theory of Kleene algebra.

90

CHAPTER 8

COMPLEXITY AND KLEENE ALGEBRA

We now apply the results from Chapter 7 to show that a PSPACE transducer

can produce a sequence witnessing the equivalence of two equivalent K-linear

automata. This sequence is verifiable in polynomial time. Here we require K

to be the two-element idempotent semiring, the underlying K-semimodules of

the K-linear automata to be free K-semimodules on finite sets, and the input

K-algebra to be the free K-algebra on a finite set of letters. As usual, we restrict

our attention to right automata.

We use these witnessing sequences as inspiration for a proof system for the

equational theory of Kleene algebra. The proof system essentially consists of the

logic of equational implications augmented with the axioms of Kleene algebra.

The proof system utilizes the fact that finite automata can be encoded as triples

of terms of the free Kleene algebra on a finite set.

8.1 Kleene Algebra

A Kleene algebra (KA) is a structure K = (K, 0, 1,+, ·,∗) such that (K, 0, 1,+, ·)

is an idempotent semiring which also satisfies the following laws:

1 + a∗a ≤ a∗ 1 + aa∗ ≤ a∗

b+ ax ≤ x⇒ a∗b ≤ x b+ xa ≤ x⇒ ba∗ ≤ x.

The partial order ≤ is induced by addition, i.e.,

x ≤ y if and only if x+ y = y.

91

Example 8.1.1. Let Σ be a finite alphabet and R be the set of regular languages

over Σ. Then R is a Kleene algebra with 0 interpreted as the empty language, 1

as the language {λ}, + as union, · as concatenation, and ∗ as the Kleene asterate.

This is the free Kleene algebra on Σ.

Example 8.1.2. Let X be a set. The set of all binary relations on X is a Kleene

algebra. Here 0 denotes the empty relation and 1 the identity relation. The oper-

ations are given as follows: + is union of relations, · is composition of relations,

and ∗ is the reflexive transitive closure of a relation.

Remark 8.1.1. Kleene algebra has many applications in theoretical computer sci-

ence, in particular a strengthening known as Kleene algebra with tests (KAT). For

example, Propositional Hoare Logic can be encoded in the equational theory of

KAT [17], and KAT can be applied to verify the correctness of certain compiler

optimizations [18]. The equational theory of KAT reduces to the equational the-

ory of KA in the following sense: an equation t1 = t2 in the language of KAT can

be transformed into an equation t′1 = t′2 in the language of KA such that t1 = t2

is a theorem of KAT if t′1 = t′2 is a theorem of KA [19].

An important fact is that the set of n× n matrices over a Kleene algebra has

a natural Kleene algebra structure. Addition and multiplication correspond to

standard addition and multiplication of matrices. The star operator is defined

inductively. See [14] for details.

At several points below, we must reason about non-square matrices over

a KA. We would like to know whether the theorems of Kleene algebra hold

when the primitive letters are interpreted as matrices of arbitrary dimension

and the function symbols are interpreted polymorphically. In general, this is

not the case. However, there is a large class of theorems which do survive this

92

treatment, including all theorems used below. This is shown in [16].

8.2 Automata, Actions, and KA Terms

Matrices over a Kleene algebra are useful because they allow finite automata

to be encoded as Kleene algebra terms [14]. We recall this encoding, and then

relate it to the notion of a K-linear automaton.

Definition 8.2.1. A Kleene algebra automaton over a Kleene algebra K is a triple

(u,A, v) where u is an 1 × n (0, 1)-vector, v is an n × 1 (0, 1)-vector, and A is an

n×nmatrix overK. The vector u encodes the start states of (u,A, v) and is called

the start vector. The vector v encodes the accept states of (u,A, v) and is called

the accept vector. The matrix A is called the transition matrix.

Definition 8.2.2. The language accepted by (u,A, v) is the element uA∗v.

Definition 8.2.3. The size of (u,A, v), denoted |(u,A, v)|, is the number of states

of the automaton. That is, if A is an n× n matrix, then |(u,A, v)| = n.

Note that an automaton over a Kleene algebra can have a transition matrix

whose entries are arbitrary terms of a Kleene algebra. To relate Kleene algebra

automata to K-linear automata, we first restrict the complexity of the terms ap-

pearing in the transition matrices. Moreover, we assume that the Kleene algebra

in question is the free Kleene algebra on a finite set Σ. We denote this Kleene

algebra by FΣ.

Definition 8.2.4. Let (u,A, v) be an automaton over FΣ. We say that (u,A, v) is

93

(a) simple if A can be expressed as a sum

A = J +
∑
a∈Σ

a · Aa

where J and each Aa is a (0, 1)-matrix.

(b) λ-free if J is the zero matrix.

(c) deterministic if it is simple, λ-free, and u and all rows of each Aa have ex-

actly one 1.

Unsurprisingly, we are interested in Kleene algebra automata that accept the

same language.

Definition 8.2.5. Let (u,A, v) and (s, B, t) be two Kleene algebra automata. We

say that (u,A, v) and (s, B, t) are equivalent precisely when uA∗v = sB∗t.

The following theorem, called the bisimulation rule, can be used to prove

Kleene algebra automata equivalent.

Theorem 8.2.1. [14] Let K be a Kleene algebra and a, b, x ∈ K. The following equa-

tional implication is a theorem of Kleene algebra:

xa = bx ⇒ xa∗ = b∗x.

Theorem 8.2.2. [14] Let (u,A, v) be a Kleene algebra automaton of size n and let

(s, B, t) be a Kleene algebra automaton of size m. Let X be an m× n matrix. Suppose

that

sX = u (8.1)

XA = BX (8.2)

Xv = t. (8.3)

Then uA∗v = sB∗t.

94

Proof. Essentially the same as the proof of Theorem 2.1.1:

sB∗t = sB∗Xv = sXA∗v = uA∗v.

Remark 8.2.1. The matrix X in the statement of the theorem is called a disimu-

lation matrix from (s, B, t) to (u,A, v) in [29]. Note that we write state vectors

as row vectors, so such an X takes state vectors of (s, B, t) to state vectors of

(u,A, v) via right multiplication.

8.2.1 KA Automata to K-linear Automata

We now encode λ-free Kleene algebra automata as K-linear automata. Let

(u,A, v) be a λ-free Kleene algebra automaton over FΣ. Let n = |(u,A, v)| and

let M be the free K-semimodule on the set {s1, s2, . . . , sn}. Then (u,A, v) corre-

sponds to the K-linear automaton

(M,KΣ∗, u, /,Ω),

where / is defined by

/ : M ⊗KΣ∗ →M

m / a = m · Aa

for all a ∈ Σ and extended as an action to all of KΣ∗ and KΣ∗ is the set of all

finite K-linear sums of elements of Σ∗, as in Example 5.1.2. We write elements

of M as row vectors and right-multiply by the Aa’s to effect a transition.

The observation function Ω is given by

Ω : M → K

95

Ω(m) = m · v.

Theorem 8.2.3. Let (u,A, v) be a λ-free Kleene algebra automaton and

(M,KΣ∗, u, /,Ω) be the corresponding K-linear automaton. For any w ∈ Σ∗,

w ≤ uA∗v if and only if Ω(u / w) = 1.

Proof. This is straightforward: since (u,A, v) is λ-free, w ≤ uA∗v precisely when

there is a w-labelled path from a start state of (u,A, v) to an accept state.

Certain disimulation matrices correspond to morphisms of K-linear au-

tomata.

Theorem 8.2.4. Let (u,A, v) and (s, B, t) be λ-free Kleene algebra automata over the

Kleene algebra FΣ. Let A be the K-linear automaton corresponding to (u,A, v) and B

be the K-linear automaton corresponding to (s, B, t). Let X be a disimulation matrix

from (s, B, t) to (u,A, v) whose entries come from the set {0, 1}. Then X encodes a

morphism of K-linear automata from B to A.

Proof. Since it’s a matrix, X determines a K-linear map from the underlying

K-semimodule of B to the underlying K-semimodule of A via right multiplica-

tion. Note that the states of (u,A, v) are the basis elements for the underlying

K-semimodule of A and the states of (s, B, t) are the basis elements for the un-

derlying K-semimodule of B. Since X satisfies Equations 8.1, 8.2, and 8.3, it

also satisfies Equations 6.1, 6.2, and 6.3, so X determines a morphism of K-

linear automata. This can be shown with the bisimulation lemma: Equation 8.2

show that the map determined byX commutes with each a-transition for a ∈ Σ.

The bisimulation lemma allows us to conclude that X commutes with the ex-

tended w-transition for each w ∈ Σ∗. Then X commutes with the actions of each

element of KΣ∗ by K-linearity.

96

8.2.2 K-linear Automata to KA Automata

Let A = (M,KΣ∗, s, /,Ω) be a K-linear automaton, where M the free

K-semimodule on the set {m1,m2, . . . ,mn}. We now give a λ-free Kleene alge-

bra automaton (u,A, v) over FΣ corresponding to A.

The start vector u is s ∈ M expressed in the basis {m1,m2, . . . ,mn} as a row

vector. The accept vector is the n× 1 (0, 1)-vector representing the map M → K

using the bases {m1,m2, . . . ,mn} and {1}.

For a given a ∈ Σ, the Aa component of the transition matrix A is the matrix

of the K-linear map M → M given by the right action of a considered as an

element of KΣ∗. Again, {m1,m2, . . . ,mn} is the basis used. Note that each entry

of X is either a 0 or a 1. A simple argument shows the following:

Theorem 8.2.5. For any w ∈ Σ∗,

Ω(s / w) = 1 if and only if w ≤ uA∗v.

Finally, we have a theorem relating morphisms of K-linear automata to dis-

imulation matrices. The proof is straightforward.

Theorem 8.2.6. Let A and B be K-linear automata, and let (u,A, v) and (s, B, t) be

the corresponding λ-free K-linear automata. Let φ be a morphism of K-linear automata

from B toA. Then the matrix of φwith respect to the appropriate bases is a disimulation

matrix from (s, B, t) to (u,A, v).

97

8.3 The Proof System

The logic of the proof system is the logic of equational implications, enriched

with the axioms of Kleene algebra. We also add as axioms a few theorems of

Kleene algebra concerning automata. These theorems are from [14]. For each

theorem, the hypotheses will be easy to verify in the proofs we produce — they

will essentially be star-free equations involving 0’s and 1’s — so the hypotheses

will be verifiable in polynomial time.

The first three theorems listed below are used to construct an automaton ac-

cepting the language denoted by a given KA term (Kleene’s Theorem). The the-

orems algebraically represent constructions on automata. Let γ and δ be terms

over some FΣ. Let (u,A, v) be an automaton accepting γ, (s, B, t) be an automa-

ton accepting δ, and Φ be a sequence of equations or equational implications.

The first theorem is known as the union lemma. It is used when producing

a Kleene algebra automaton accepting the union of the languages of two given

Kleene algebra automata.

Φ ` uA∗v = γ Φ ` sB∗t = δ

Φ `
[
u s

] A 0

0 B

∗ v

t

 = γ + δ
.

The second theorem is known as the concatenation lemma. The term vs in the

upper right corner of the transition matrix in the conclusion represents adding

98

λ-transitions from the accept states of (u,A, v) to the start states of (s, B, t):

Φ ` uA∗v = γ Φ ` sB∗t = δ

Φ `
[
u 0

] A vs

0 B

∗ 0

t

 = γδ
.

The third is known as the asterate lemma. The term A + vu represents adding

λ-transitions from the accept states of (u,A, v) back to the start states; we must

also add a state to accept the empty word:

Φ ` uA∗v = γ

Φ `
[

1 u

] 1 0

0 A+ vu

∗ 1

v

 = γ∗
.

The fourth theorem we add allows us to prove that an automaton accepts the

same language as the automaton obtained by eliminating λ-transitions. Let

(u,A, v) and (u′, F, v) be automata of size n, and let J be an n×nmatrix. Suppose

that the following equations hold:

A = J + A′

F = A′J∗

u′ = uJ∗.

It follows that (u,A, v) and (u′, F, v) are equivalent. We add the following theo-

rem to the KA axioms, called the λ-elimination lemma:

Φ ` A = J + A′ Φ ` F = A′J∗ Φ ` u′ = uJ∗

Φ ` uA∗v = u′F ∗v
.

In our applications, (u,A, v) is simple and J is a (0, 1)-matrix, so uJ∗ is a (0, 1)-

vector and F is λ-free.

99

Finally, we add a rule expressing that two automata related by a disimulation

matrix are equivalent:

Φ ` sX = u Φ ` XA = BX Φ ` Xv = t

Φ ` uA∗v = sB∗t.

8.4 Generating Proofs

In this section, we give an algorithm to generate proofs and show that it can

be implemented by a PSPACE transducer. We use the theorems of Section 8.2

frequently. These theorems allow us to reason about Kleene algebra automata

using theorems about K-linear automata. Note that all of the automata appear-

ing in the proof are Kleene algebra automata.

Given a KA term α, let |α| be the number of nodes in the syntax tree of α.

Theorem 8.4.1. Let α = β be an equation of Kleene algebra. A proof that α = β can be

produced by a transducer using only polynomially many (in |α|+ |β|) worktape cells.

Note that this was not the case for the proof of [14]. Respecting the space

bound is nontrivial; we require several terms of exponential size, some of which

are constructed from terms which are themselves exponentially large. To sim-

plify proving that the space bound is respected, we divide the construction of

the proof into stages. For each stage, we show that both the terms and the proofs

required at that stage can be constructed in PSPACE. The stages:

1. Construct an automaton accepting α, an automaton accepting β, and

proofs thereof.

100

2. For each automaton, construct an equivalent λ-free automaton, and an

equivalence proof.

3. For each λ-free automaton, construct an equivalent accessible determinis-

tic automaton, and a disimulation matrix between them.

4. Construct the minimal deterministic automaton equivalent to the acces-

sible deterministic automaton accepting α, and a disimulation matrix be-

tween them.

5. Construct the disimulation matrix between the minimal deterministic au-

tomaton for α and the accessible automaton for β.

Stages 2 through 5 require one or more terms from previous stages. We treat

each stage independently, and show that there are transducers which generate

the required terms and proofs at each stage. To combine all of the stages, we use

the following fact about the composition of space-bounded transducers.

Lemma 8.4.1. Suppose f(x) can be computed by a PSPACE transducer F and g(x)

can be computed by a PLSPACE transducer G (a transducer using polylog many

worktape cells in the size of its input). Then g(f(x)) can be computed by a PSPACE

transducer.

Proof. Note that |f(x)| might be exponential in |x|, so there is not necessarily

enough space to write down f(x) in its entirety. Rather, a PSPACE transducer

H computing g(f(x)) computes f(x) on a demand-driven basis. On input x,

H begins by running G. Whenever a bit of f(x) is needed, H saves the cur-

rent state of G and begins running F on input x, disregarding the output of

F until the required bit of f(x) is produced. It then resumes running G, sup-

plying the requested bit of f(x). The transducer H needs polynomially many

101

worktape cells to run F , polynomially many cells to count up to the length of

f(x), and polynomially many cells for G’s worktape, since G needs at most

O((log |f(x)|)d) ≤ O(|x|m) for some m.

8.4.1 Stage 1: KA term to Automaton

We first show that the inductive construction used in the proof of Kleene’s the-

orem can be performed by a PSPACE machine. Given a term α, the machine

must construct an automaton (u,A, v) accepting α and a proof that uA∗v = α.

Given a ∈ Σ, the following automaton accepts the language {a}:
 1

0

 ,
 0 a

0 0

 ,
 0

1

 .

There are also one-state automata for ∅ and ε: ([0], [0], [0]) and ([1], [1], [1]), re-

spectively. We assume that for every a ∈ Σ, the machine has a proof that

a =

[
1 0

] 0 a

0 0

∗ 0

1

stored in its finite control. We also assume that the machine can output proofs

of the equations

0 = 00∗0

1 = 11∗1.

For the inductive step, the machine can work its way up the syntax tree of α,

constructing automata using the union, concatenation, and asterate lemmas. At

each step, it outputs the appropriate equation, i.e., the conclusion of one of the

102

three lemmas. When finished, the machine will have constructed an automaton

accepting α and also will have printed a proof of this fact on the output tape. All

of the terms appearing in the proof are polynomial in the size of α and straight-

forward to construct. Furthermore, the automata constructed are simple.

8.4.2 Stage 2: Automaton to λ-free Automaton

We now show that there is a transducer which takes a simple automaton (u,A, v)

as input and constructs from it an equivalent simple λ-free automaton (u′, F, v),

and that there is a transducer which takes as input the pair ((u,A, v), (u′, F, v))

and outputs a proof of the equivalence.

Constructing the λ-free automaton, (u′, F, v), is easy. Since (u,A, v) is simple,

A = J +
∑
a∈Σ

a · Aa.

as in Definition 8.2.4.a. The transducer computes J from (u,A, v) and then com-

putes J∗, which is just the reflexive transitive closure of the relation denoted by

J . It also computes

A′ =
∑
a∈Σ

a · Aa.

Then

u′ = uJ∗

F = A′J∗.

It is easy to see that both u′ and F can be constructed in PSPACE. Note

that (u′, F, v) might not be simple, but can easily be made so using additive

idempotence. To prove equivalence, the proof-generating transducer uses the

103

ε-elimination lemma. It must prove the following hypotheses:

A = J + A′

F = A′J∗

u′ = uJ∗

all of which are easily proved in PSPACE. The machine must also prove that

the term J∗ is the star of J . First, the machine proves

1 + J(1 + J + J2 + · · ·+ Jn) ≤ (1 + J + J2 + · · ·+ Jn)

by direct computation, where n = |(u,A, v)|. This inequality is true; if the i, j

entry of JJn is 1, then there is a path of length n + 1 from i to j (viewing J as

the adjacency matrix of a graph). Since J has only n vertices, this path must

repeat at least one vertex, and so there will be a 1 in the i, j entry of Jk for some

k < n+ 1. Reasoning in KA,

J∗ ≤ 1 + J + J2 + · · ·+ Jn.

Next, the machine generates a proof that for any x,

1 + x+ x2 + · · ·+ xn ≤ x∗.

This inequality is an easy consequence of the KA axioms. Substituting J for X

and combining these two inequalities yields

1 + J + J2 + · · ·+ Jn = J∗.

8.4.3 Stage 3: λ-free Automaton to Deterministic Automaton

It must now be shown that there is a PSPACE transducer which takes in

(u′, F, v), a simple λ-free automaton, and outputs (s,D, t), an equivalent accessi-

104

ble deterministic automaton. Let |(u′, F, v)| = n. The Kleene algebra automaton

A corresponds to a K-linear automaton A by Theorem 8.2.3.

By Theorem 7.5.1, we have the following sequence of K-linear automata:

A F (U(A))εoo F (U(A)′).
F (i)oo

Recall that ε is the counit of the adjunction between K−Mod and Set, U(A)′ is

the accessible part of U(A), and i is the inclusion map U(A)′ → U(A). So we

must simply construct (s,D, t), the Kleene algebra automaton corresponding to

U(A)′, and a (0, 1)-matrix X encoding the K-linear map F (i) ◦ ε.

To generate (s,D, t), the machine performs the standard subset construction

on (u′, F, v), with the added condition that it tests each subset for accessibility

before granting it state status. The subset construction forgets the module struc-

ture on the underlying K-semimodule of A. Elements of a free K-semimodule

are essentially subsets of generators when K is the two-element idempotent

semiring. Encoding the subsets as entries of a matrix is an implicit application

of the free K-semimodule functor.

The following lemma verifies that the test for accessibility can be performed

in PSPACE.

Lemma 8.4.2. Let (u′, F, v) be a simple λ-free automaton with n states. It is decidable

in O(n2) space whether C, a set of states of (u, F, v), is accessible when considered as a

state in the deterministic automaton obtained from (u′, F, v) by the subset construction.

Proof. We first give a nondeterministic linear space machine. The machine starts

with (u′, F, v) and the characteristic vector of C written on its input tape. It be-

gins by writing the start vector u′ on its worktape. If u′ = C, it halts and answers

105

yes. Otherwise it guesses an a ∈ Σ and overwrites its worktape contents with

the characteristic vector of u /F a. If this is equal to C, it accepts, otherwise it

guesses another letter and repeats. At any time, the machine must store only

O(n) bits of information. By Savitch’s theorem, there is an equivalent determin-

istic machine running in O(n2) space.

To construct s, the machine counts from 0 to 2n−1 in binary (each number is

identified with a subset of states of (u′, F, v) by treating its binary representation

as a characteristic vector). For each i between 0 and 2n − 1, it tests whether i

represents an accessible state. If i does not, the machine proceeds to the next

i. If i does represent an accessible state, the machine outputs 1 if i represents

precisely the set of start states of (u′, F, v), and 0 otherwise. The construction of

t is similar, except the machine outputs 1 if any state in the subset represented

by i is an accept state, or 0 if none are.

The construction of D, the transition matrix, requires three counters. The

first two, i and j, range from 0 to 2n − 1, and are used to keep track of the rows

and columns of D, respectively. The third counter, c, ranges from 0 to m − 1,

where m = |Σ|. The machine starts with all counters set to zero. It begins

by testing i for accessibility. If i is inaccessible, it increments i and repeats. If

i does correspond to an accessible state, it then tests each possible value of j

for accessibility. If j is not accessible, it increments j. If j does represent an

accessible state, it tests each ak ∈ Σ to determine whether i/F ak = j (cf. Theorem

7.2.1). If yes, it outputs ak. If none of the ak tests succeed, it outputs 0. After

testing all of the ai’s, the machine resets c to 0 and goes to the next j. After

checking all of the j’s, the machine resets j to 0 and goes to the next i. It is easy

to see that (s,D, t) is a deterministic Kleene algebra automaton.

106

This transducer runs in O(n2) space, where n is |(u′, F, v)|. The machine re-

quires O(n2) space to perform the test in Lemma 8.4.2 and a few counters which

range up to 2n − 1.

Let d be |(s,D, t)| and letX be the d×nmatrix encoding the relation in which

a state of (s,D, t) is related to all of the states of (u, F, v) that it “contains”. In

other words, X encodes that map F (i) ◦ ε (by right multiplication).

We must show that X can be computed without violating the space bound.

The transducer which takes the pair ((u′, F, v), (s,D, t)) and outputs X can use

only polynomially many (in |(u′, F, v)|) cells, although |(s,D, t)| may be expo-

nential in n. To construct X , the machine needs one counter ranging from 0 to

2n − 1. For each i between 0 and 2n − 1, the machine tests the subset of states

encoded by i for accessibility. If it is accessible, it outputs the binary represen-

tation of i as a row vector. If i does not represent an accessible state, it goes to

i+ 1.

8.4.4 Stage 4: Deterministic Automaton to Minimal Determin-

istic Automaton

At this stage, we require two transducers. The first constructs the minimal de-

terministic automaton equivalent to a given accessible deterministic automaton,

and the second takes as input a pair (deterministic automaton, equivalent min-

imal deterministic automaton) and outputs the disimulation matrix between

them. By Theorem 7.5.1, we have the following K-linear automata and mor-

107

phisms:

F (U(A)′)
F (m) // F (M(U(A)′)).

Recall that M(U(A)′) is the minimal deterministic automaton equivalent to

U(A)′. We must construct (p,M, q), the Kleene algebra automata correspond-

ing to M(U(A)′), and a (0, 1)-matrix representing the map F (m).

The automaton (p,M, q) is constructed by examining (s,D, t) and outputting

the least-numbered state in each equivalence class of a Myhill-Nerode relation.

This guarantees that each state (generator) of (p,M, q) corresponds to a formal

language. We require a lemma establishing a space bound on the procedure to

identify equivalent states.

Lemma 8.4.3. Let (s,D, t) be a deterministic Kleene algebra automaton. It is decidable

in PLSPACE space whether i and j, two states of (s,D, t), are equivalent.

Proof. We first give an NLOGSPACE procedure to recognize distinguishable

(inequivalent) states. The machine begins with (s,D, t), i, and j written on its

input tape. If one of i, j is an accept state and the other is not, the machine halts

and answers distinguishable. Otherwise it guesses an a1 ∈ Σ and overwrites its

worktape contents with i /D a1 and j /D a1. If exactly one of these states is an

accept state, the machine halts and answers distinguishable. If not, it guesses an

a2 ∈ Σ and repeats the procedure. At any time, the machine has to remember

only two states of (s,D, t), and so it runs in NLOGSPACE. By Savitch’s theo-

rem, there is an equivalent deterministic machine running in O((log |(s,D, t)|)2)

space.

To construct p, the start vector, the machine scans s. For each state i, it checks

whether i is equivalent to some lower-numbered state. If yes, it skips to the next

108

i. If i is the least-numbered state in its equivalence class, the machine outputs

a 1 if i is equivalent to the start state of (s,D, t), and 0 otherwise. The accept

vector, q, is constructed similarly. The machine scans through t, and for each

state i that is the least-numbered state in its equivalence class, it outputs 1 if i is

an accept state, 0 if i is not.

The construction of the transition matrix M resembles the construction of

the transition matrix of the deterministic automaton in the previous stage. The

machine maintains two counters, i and j. It scans through the states of (s,D, t),

and for each state i which is the least-numbered state in its equivalence class, it

tests each state j in turn, outputting Dij for each j which is the first state in its

equivalence class. It is easy to see that this procedure can be done in PLSPACE

and does indeed generate the equivalent minimal automaton.

A transducer to construct the disimulation matrix X in PLSPACE from the

pair ((s,D, t), (p,M, q)) uses a straightforward modification of Lemma 8.4.3. It

must now check whether states in different automata are equivalent. By Lemma

8.4.1, the above terms can be generated in PSPACE.

8.4.5 Stage 5: Deterministic Automaton for β Disimilar to Min-

imal Automaton for α

It suffices to use the procedure from the previous stage to generate the disimu-

lation matrix between the two automata.

109

CHAPTER 9

ALTERNATING AUTOMATA

We now consider alternating finite automata, which have the following inter-

esting property.

Theorem 9.0.2. (Theorem 2.14 [25]) Let L be a formal language. Then L is accepted

by an n-state alternating finite automaton if and only if the reverse of L is accepted by

a deterministic finite automaton with at most 2n states.

The reason for the reversal is that alternating finite automata are essentially

defined using left actions, whereas the standard definition of a deterministic

finite automaton involves a right action. The main construction of this chapter

is a determinizing functor for alternating finite automata.

In this chapter, K always refers to the two-element idempotent semiring.

Also, we denote the empty word by e, because we use λ-notation for functions.

9.1 Alternating Automata

We recall the definition of an alternating finite automaton.

Definition 9.1.1. ([15]) An alternating finite automaton A = (Q,Σ, δ, F, β) consists

of:

1. A finite set of states Q,

2. A finite input alphabet Σ,

110

3. A transition function

δ : (Q× Σ)→ ((Q→ {0, 1})→ {0, 1}),

4. A set of final states F ⊆ Q,

5. An acceptance condition β : (Q→ {0, 1})→ {0, 1}.

The transition function δ determines a function

δ̂ : (Q× Σ∗)→ ((Q→ {0, 1})→ {0, 1})

defined inductively as

δ̂(q, e)(u) = u(q)

δ̂(q, aw)(u) = δ(q, a)(λp.(δ̂(p, w)(u)))

where q ∈ Q, a ∈ Σ, w ∈ Σ∗, and u ∈ (Q→ {0, 1}).

Definition 9.1.2. An AFA A = (Q,Σ, δ, F, β) is said to accept w ∈ Σ∗ precisely

when

β(λp.(δ̂(p, w)(F))) = 1.

Intuitively, the machine produces a computation tree with depth equal to

the length of the input word. The characteristic vector of F provides a {0,1}-

labelling of the leaves of this tree. The transition function δ is used to inductively

label the lower levels of the tree. An input word is accepted if the induced

labelling at level 0 satisfies β.

We now cast the definition of an alternating finite automaton into our

framework. Intuitively, in an AFA, the states are described using a K-

semimodule structure. However, the transitions do not necessarily respect the

K-semimodule structure: the transitions are arbitrary functions from the K-

semimodule to itself. Note than an AFA reads its input from right to left.

111

Definition 9.1.3. A alternating finite K-automaton A = (M,Σ∗, s, .,Ω) consists of:

1. A semimodule of states, M , which is the free K-semimodule on a finite set

Q,

2. An input monoid Σ∗, which is the free monoid on a finite alphabet Σ,

3. A start vector s ∈M ,

4. A left action . : Σ∗ ×M → M , which is a monoid homomorphism from Σ∗

to Endl(U ′(M)), where U ′(M) is the underlying set of M ,

5. An observation function Ω : M → K.

Definition 9.1.4. Let A = (M,Σ∗, s, .,Ω) be an alternating finite K-automaton

and w ∈ Σ∗. Then A is said to accept w precisely when

Ω(w . s) = 1.

Let A = (Q,Σ, δ, F, β) be an alternating finite automaton. An alternating

finite K-automaton equivalent to A is B = (M,Σ∗, s, .,Ω), where M is the free

K-semimodule on Q, s is the characteristic function of F , and Ω = β. The

transition action . is defined as follows. Let u ∈ M . We consider u to be a

function Q→ K. For each a ∈ Σ, let

fa : M →M

fa(u)(q) = δ(q, a)(u).

We then extend this to a monoid homomorphism Σ∗ → Endl(U ′(M)) and de-

note the image of w under this homomorphism by fw. We must show fw(u) =

λp.(δ̂(p, w))(u). For the base case,

fe(u) = u = λp.(δ̂(p, e))(u).

112

Now suppose that

fw(u) = λp.(δ̂(p, w))(u)

Then

faw(u) = fa(fw(u))

= fa(λp.(δ̂(p, w))(u))

= λp.(δ̂(p, aw))(u).

This establishes the following theorem.

Theorem 9.1.1. Let A = (Q,Σ, δ, F, β) be an alternating finite automaton and

B = (M,Σ∗, s, .,Ω) be the corresponding alternating finite K-automaton constructed

according to the procedure above. Then

ΩB(w .B sB) = 1 if and only if βA(λp.(δ̂A(p, w)(FA))) = 1

for all w ∈ Σ∗.

9.2 Determinization

Determinizing an alternating finite K-automaton is similar to the determiniza-

tion of K-linear automata in Section 7.2. Let K−Mod′ be the category whose

objects are K-semimodules and whose arrows are arbitrary functions between

K-semimodules. Let G′ be the functor K−Mod′ → Set which takes an object of

K−Mod′ to its underlying set and an arrow of K−Mod′ to the function between

the underlying sets.

Let B = (M,Σ∗, s, .,Ω) be an alternating finite K-automaton. We can easily

modify the construction in Section 7.2 to yield a functor G from the category of

113

alternating finiteK-automata to a category of deterministic automata. Applying

G to B yields a left deterministic automaton D = (G′(M),Σ∗, s′, G′(.), G′(Ω)).

Here s′ is just s considered as an element of G′(M). Note that |D| = 2n, where

n is the number of generators of the underlying K-semimodule of B. If B is the

alternating finite K-automaton corresponding to some AFA A, then the start

state of D corresponds to the final states of A. The observation function ΩD

satisfies ΩD(s) = 1 if and only if s corresponds to a subset of states of A which

satisfies the acceptance condition.

In the literature, it is common to define deterministic automata as right de-

terministic automata. However, the deterministic automaton produced, D, is a

left deterministic automaton. However, D can be made into a nondeterministic

left finite automaton N by coding D with (0, 1)-matrices, i.e., applying a free

functor.

This left automaton can also be viewed as a right automaton N ′, similar to

Example 6.1.1. The reverse of N ′ (cf. Theorem 3.3.1) is deterministic in the sense

that it has only one start state and only one outgoing a-transition at each state

for each a ∈ Σ.

In the next chapter, we provide some remarks on different ways to use a

K-semimodule structure to describe the states of an automaton efficiently.

114

CHAPTER 10

CONCLUSION AND FUTURE WORK

We now provide a summary, concluding remarks, and some directions for

future investigation.

10.1 Summary and Concluding Remarks

Let M be a monoid in a monoidal category. We developed a view of an automa-

ton as a pointed, observable representation of M . In the monoidal category Set,

this yields deterministic automata with elements ofM as inputs. Such automata

define functions (languages) M → O, where O is an arbitrary nonempty set. If

M is a free monoid on a finite set and O is a two-element set, this reduces to

the usual definition of a deterministic automaton, with possibly infinitely many

states.

In the monoidal category K−Mod, this yieldsK-linear automata, which pro-

vide an alternative to weighted automata. In this alternative, formal languages

are generalized to elements of a dual semimodule, rather than being general-

ized to formal power series. This approach highlights the numerous analogies

between the theory of algebras (bialgebras) and the theory of automata and for-

mal languages: transitioning from one to another is essentially changing the

underlying category. Furthermore, we have shown the utility of comultiplica-

tion for performing constructions on automata.

We gave an adjunction between certain categories of K-linear automata and

certain categories of deterministic automata. One functor of the adjunction, a

forgetful functor, generalizes the subset construction used to determinize non-

115

deterministic automata. Using this adjunction, we gave a categorical account of

the completeness proof in [14].

Finally, we fit alternating finite automata into our framework. We showed

that alternating finite automata naturally employ left actions. The standard def-

inition of a deterministic automaton uses a right action, and so the usual sub-

set construction for alternating finite automata— for example in [15] or [25] —

must turn a left action into a right action. This explains why the usual subset

construction does not yield a deterministic automaton, but rather an automaton

whose reverse is deterministic.

It is instructive to compare how states are represented in deterministic, K-

linear, and alternating finite automata. In the case of deterministic automata,

the states are elements of unstructured sets. In contrast, alternating finite au-

tomata have aK-semimodule structure on their states. However, the transitions

of an alternating finite automaton are arbitrary functions and are not required to

respect this structure. With K-linear automata, there is a K-semimodule struc-

ture on the set of states, and the transitions are K-linear maps. When the K-

semimodule of states is a free K-semimodule, the transitions can be completely

described by their actions on the generators. In this case, the K-semimodule

structure is essentially an efficient description of the states of the automaton,

and this description can be used to give an efficient description of the transi-

tions. Determinization is simply forgetting this description.

10.2 Future Work

We hope to extend the results in this dissertation in the following directions.

116

10.2.1 Bialgebras and Hopf Algebras

One possibility is to look for deeper connections between K-bialgebras and au-

tomata. For example, the Tannaka-Krein theorem, loosely stated, allows one to

reconstruct a bialgebra from its category of representations. This theorem is gen-

eralized to other bialgebra-like structures in [24]. In the context of automata, we

hope to extend this theorem to recover the input K-bialgebra from a monoidal

category of K-linear automata. It seems likely that with appropriate assump-

tions, multiplication in the input K-bialgebra could be recovered from the tran-

sitions of the automata, and comultiplication in the input K-bialgebra could be

recovered from the monoidal structure of the category of automata. In Chap-

ter 6, we saw that comultiplication in a bialgebra defines a multiplication of

automata. Essentially, we would like to investigate when the converse holds.

We would also like to find connections between automata and Hopf algebras.

A Hopf algebra H is a bialgebra along with an antipode map H → H , which

plays a role similar to an inverse. It does not seem likely that a map satisfy-

ing the defining diagrams of an antipode will be of use when working with

automata; doing so would require some sort of “inversion” of the input word.

However, a standard result is that an antipode is both an anti-algebra map and

an anti-coalgebra map (see, for example, Proposition 1.3.1 of [24]). In certain

cases, such as the K-bialgebras in Example 5.3.1, word reversal induces an anti-

algebra map and an anti-coalgebra map. It is our hope that a theory of “weak

Hopf algebras”, in which the antipode is replaced by an arbitrary map which

is both an anti-algebra map and an anti-coalgebra map could be developed to

give a comprehensive account relating reversal, duality, and minimization.

117

10.2.2 Proof Complexity

We would also like to investigate the complexity of the proof system in Chap-

ter 7. As we have seen, a special case of this system yields a proof system for

the equivalence of nondeterministic finite automata (encoded as K-linear au-

tomata). The proofs produced can be exponentially long, because they rely

on (accessible) determinization. However, determinization is not always nec-

essary. For example, given two isomorphic K-linear automata, an isomorphism

between them can be encoded as a K-linear map. A widely-held belief of com-

plexity theory, NP 6= PSPACE, implies that there must be equivalent K-linear

automata such that any proof in this system is exponentially long (here K is

the two-element idempotent semiring). Identifying equations which are hard to

prove is interesting from the point of view of proof complexity, and identifying

equations with short proofs might be of use for applications of Kleene algebra.

10.2.3 Other Automata and Other Inputs

Finally, we would like to apply ideas from automata theory to other disciplines

which use bialgebras, such as combinatorics or physics. Of particular inter-

est would be to find natural situations involving automata with non-free input

monoids. In particular, bialgebras of trees have been studied by combinatorial-

ists for some time. This may yield a new type of tree automaton.

118

BIBLIOGRAPHY

[1] J. Adàmek and V. Trnkovà. Automata and Algebras in Categories. Kluwer
Academic Publishers, 1990.

[2] J. Berstel and C. Reutenauer. Rational Series and Their Languages. EATCS
Monographs on Theoretical Computer Science. Springer-Verlag, 1988.

[3] P. Buchholz. Bisimulation relations for weighted automata. Theoretical Com-
puter Science, 393:109–123, 2008.

[4] S.A. Cook and A.R. Reckhow. The relative efficiency of propositional proof
systems. Journal of Symbolic Logic, 44(1):36–50, 1979.

[5] G. Duchamp, M. Flouret, È Laugerotte, and J.-G. Luque. Direct and dual
laws for automata with multiplicities. Theoretical Computer Science, 267:105–
120, 2001.

[6] G. Duchamp and Christophe Tollu. Sweedler’s duals and Schützenberger’s
calculus. Archive Preprint: arXiv:0712.0125v2.

[7] David S. Dummit and Richard M. Foote. Abstract Algebra. Prentice-Hall,
Inc, 1999.

[8] Samuel Eilenberg. Automata, Languages, and Machines, volume A. Academic
Press, 1974.

[9] Melvin Fitting. Bisimulations and boolean vectors. Advances in Modal Logic,
4:97–125, 2003.

[10] Jonathan S. Golan. Semirings and Their Applications. Kluwer Academic Pub-
lishers, 1999.

[11] R.L. Grossman and R.G. Larson. The realization of input-output maps us-
ing bialgebras. Forum Mathematicum, 4:109–121, 1992.

[12] R.L. Grossman and R.G. Larson. Bialgebras and realizations. In J. Bergen,
S. Catoiu, and W. Chin, editors, Hopf Algebras, pages 157–166. Marcel
Dekker, Inc, 2004.

[13] Yefim Katsov. Tensor products and injective envelopes of semimodules
over additively regular semirings. Algebra Colloquium, 4(2):121–131, 1997.

119

[14] Dexter Kozen. A completeness theorem for Kleene algebras and the algebra
of regular events. Infor. and Comput., 110(2):366–390, May 1994.

[15] Dexter Kozen. Automata and Computability. Springer-Verlag, 1997.

[16] Dexter Kozen. Typed Kleene algebra. Technical Report TR98-1669, Com-
puter Science Department, Cornell University, March 1998.

[17] Dexter Kozen. On Hoare logic and Kleene algebra with tests. Trans. Com-
putational Logic, 1(1):60–76, July 2000.

[18] Dexter Kozen and Maria-Cristina Patron. Certification of compiler opti-
mizations using Kleene algebra with tests. In John Lloyd, Veronica Dahl,
Ulrich Furbach, Manfred Kerber, Kung-Kiu Lau, Catuscia Palamidessi,
Luis Moniz Pereira, Yehoshua Sagiv, and Peter J. Stuckey, editors, Proc.
1st Int. Conf. Computational Logic (CL2000), volume 1861 of Lecture Notes in
Artificial Intelligence, pages 568–582, London, July 2000. Springer-Verlag.

[19] Dexter Kozen and Frederick Smith. Kleene algebra with tests: Complete-
ness and decidability. In D. van Dalen and M. Bezem, editors, Proc. 10th
Int. Workshop Computer Science Logic (CSL’96), volume 1258 of Lecture Notes
in Computer Science, pages 244–259, Utrecht, The Netherlands, September
1996. Springer-Verlag.

[20] W. Kuich and A. Salomaa. Semirings, Automata, Languages. EATCS Mono-
graphs on Theoretical Computer Science. Springer-Verlag, 1986.

[21] Serge Lang. Algebra: Revised Third Edition. Springer-Verlag, 2002.

[22] G.L. Litvinov, V.P. Masloc, and G.B. Shpiz. Tensor products of idempotent
semimodules. An algebraic approach. Mathematical Notes, 65(4), 1999.

[23] Saunders MacLane. Categories for the Working Mathematician. Springer-
Verlag, 1971.

[24] Shahn Majid. Foundations of Quantum Group Theory. Cambridge University
Press, 1995.

[25] G. Rosenberg and A. Salomaa, editors. Handbook Of Formal Languages, vol-
ume 1. Springer-Verlag, 1997.

120

[26] J.J.M.M. Rutten. Automata and coinduction (an exercise in coalgebra). In
Proc. CONCUR ’98, volume 1466 of LNCS, pages 194–218. Springer-Verlag,
1998.

[27] J.J.M.M. Rutten. Universal coalgebra: A theory of systems. Theoretical Com-
puter Science, 249:3–80, 2000.

[28] Ross Street. Quantum Groups: A Path To Current Algebra. Cambridge Uni-
versity Press, 2007.

[29] James Worthington. Automatic proof generation in Kleene algebra. In
Proc. 10th Int. Conf. Relational Methods in Computer Science (RelMiCS10) and
5th Int. Conf Applications of Kleene Algebra (AKA5), volume 4988 of LNCS,
pages 382–396. Springer-Verlag, April 2008.

[30] James Worthington. A bialgebraic approach to automata and formal lan-
guage theory. In Proc. Logical Foundations of Computer Science (LFCS ’09),
volume 5407 of LNCS, pages 451–467. Springer-Verlag, January 2009.

121

