MATH 321 Manifolds and Differential Forms (II) ## Homework 10 Solution Due December 9, 3:00 p.m. 10.1 (3 points) - (i) Proof: $\int_{\partial M} \alpha = \int_M d\alpha = \int_M dx dy dy dx = 2 \int_M dx dy = 2$ (surface area of M). - (ii) Solution: $$Area = \frac{1}{2} \int_{\partial M} \alpha = \frac{1}{2} \int_{0}^{2\pi} c^* \alpha$$ $$= \frac{1}{2} \int_{0}^{2\pi} \cos^3 t 3 \sin^2 t \cos t dt + \sin^3 t 3 \cos^2 t \sin t dt$$ $$= \frac{3}{2} \int_{0}^{2\pi} \sin^2 t \cos^2 t dt = \frac{3}{8} \int_{0}^{2\pi} (\sin 2t)^2 dt$$ $$= \frac{3}{8} \int_{0}^{2\pi} \frac{1 - \cos 4t}{2} dt$$ $$= 3\pi/8$$ - (iii) Solution: $\int_{\partial M} \alpha = \int_M d\alpha = \int_M \sum_{i=1}^n dx = n(\text{Volume of M}).$ - 10.3 (6 points) Proof: - (i) $$df(*dg) = \left(\sum_{i} \frac{\partial f}{\partial x_{i}} dx_{i}\right) (*\sum_{j} \frac{\partial g}{\partial x_{j}} dx_{j})$$ $$= \sum_{i,j} \frac{\partial f}{\partial x_{i}} \frac{\partial g}{\partial x_{j}} dx_{i} (*dx_{j})$$ $$= \sum_{i} \frac{\partial f}{\partial x_{i}} \frac{\partial g}{\partial x_{i}} dx$$ $$= (grad(f) \cdot grad(g))\mu$$ (ii) $$d(*dg) = d\left(\sum_{i} \frac{\partial g}{\partial x_{i}}(*dx_{i})\right)$$ $$= \sum_{i} \left[d\left(\frac{\partial g}{\partial x_{i}}\right)(*dx_{i}) + \frac{\partial g}{\partial x_{i}}d(*dx_{i})\right]$$ $$= \sum_{i} \left[\sum_{j} \frac{\partial^{2} g}{\partial x_{i}\partial x_{j}}dx_{j}(*dx_{i})\right]$$ $$= \sum_{i} \frac{\partial^{2} g}{\partial x_{i}^{2}}dx = (\Delta g)\mu$$ (iii) $d(f(*dg)) = df(*dg) + fd(*dg) = (gradf \cdot gradg)\mu + f(\Delta g)\mu = (gradf \cdot gradg + f\Delta g)\mu$. (v) $$\int_{\partial M}(f(*dg)-g(*df))=D(f,g)+\int_{M}(f\Delta g)\mu-D(f,g)-\int_{M}(g\Delta f)\mu=\int_{M}(f\Delta g-g\Delta f)\mu.$$ (vi) LHS= $\int_{\partial M} (f(gradg) - g(gradf)) \cdot \mathbf{n} \mu_{\partial M} = \int_{\partial M} (f(*dg) - g(*df)) \mu$, since $gradg \cdot \mathbf{n} \mu_{\partial M} = *dg$ and $gradf \cdot \mathbf{n} \mu_{\partial M} = *df$. To see this, note by Corollary 9.11, $\mu_{\partial M} = \mathbf{n} \cdot (*dx)$. So if we let $\mathbf{n} = (v_1, \dots, v_n)$, then we have $$\begin{split} gradg \cdot \mathbf{n}\mu_{\partial M} &= (gradg \cdot \mathbf{n}\mu)(\mathbf{n} \cdot (*dx)) \\ &= (\sum_i \frac{\partial g}{\partial x_i} v_i)(\sum_j (-1)^{j-1} dx_1 \cdots d\hat{x}_j \cdots dx_n v_j) \\ &= \sum_{i,j} (-1)^{j-1} v_i v_j \frac{\partial g}{\partial x_i} dx_1 \cdots d\hat{x}_j \cdots dx_n \\ &= \sum_i (-1)^{i-1} \frac{\partial g}{\partial x_i} dx_1 \cdots d\hat{x}_i \cdots dx_n \\ &= *dg \end{split}$$ 10.4 (6 points) - (i) Proof: By Corollary 9.11, $\mu_{\partial B} = \mathbf{n} \cdot (*d\mathbf{x})$. This is the restriction of v to ∂B , where v is as in Exercise 9.5(ii). So $A_n(R) = \int_{\partial B} \mu_{\partial B} = \int_{\partial B} v|_{\partial B}$. \square - (ii) Proof: $V_n(R) = \int_0^R \int_{\partial B_r} \mu_{\partial B_r} dr = \int_0^R An(r) dr$, where B_r stands for the ball with radius r. The first equality is intuitively true and can be rigorously proved if you know the definition of Riemann integral. We shall not present a formal justification here, but will take it for granted henceforth. Therefore, we have $dV_n(R)/dR = A_n(R)$. By change of variable formula, we can deduce $V_n(R) = R^n V_n$. So $A_n(R) = dV_n(R)/dR = nR^{n-1}V_n$. In particular, for R = 1, we have $A_n = nV_n$. So $A_n(R)/A_n = nR^{n-1}V_n/nV_n = R^{n-1}$. Hence $A_n(R) = A_nR^{n-1}$. (iii) Proof: $$\int_B g\mu_B = \int_0^R dr \int_{\partial B} f(r) \mu_{\partial B} = \int_0^R f(r) A_n(r) dr = A_n \int_0^R f(r) r^{n-1} dr$$ (iv) Proof: Let $f(r) = e^{-r^2}$, we get by (iii) $$\int_{B} e^{-r^{2}} \mu_{B} = A_{n} \int_{0}^{R} r^{n-1} e^{-r^{2}} dr$$ Let $R \to \infty$, we get $\int_{\mathbb{R}^n} e^{-r^2} dx = A_n \int_0^\infty e^{-r^2} r^{n-1} dr$. Note $$LHS = \prod_{i=1}^{n} \int_{-\infty}^{\infty} e^{-x_{i}^{2}} dx_{i} = \left(\int_{-\infty}^{\infty} e^{-r^{2}} dr \right)^{n}$$ we are then done. (v) Solution: By problem 2.6 (iii), and above (iv) $$\pi^{n/2} = A_n \frac{1}{2} \Gamma(\frac{1+n-1}{2}) = A_n \frac{1}{2} \Gamma(n/2)$$ So, $A_n = 2\pi^{n/2}/\Gamma(n/2)$. For n=2m, by 2.6(ii), $A_{2m} = 2\pi^m/\Gamma(m) = 2\pi^m/(m-1)!$. For n=2m+1, by 2.6(i), $$A_{2m+1} = \frac{2^{m+1}\pi^m}{1 \cdot 3 \cdot 5 \cdots (2m-1)}$$ (vi) Solution: By $A_n = nV_n$ and (v) above, we get the formula for V_n . \square (vii) Proof: Proved in (ii). (viii) Solution: We just use the formula in (v) and (vi) to fill out the table. $\hfill\Box$ (ix) Solution: All the limits are zero. To see this, instead of using Stirling's formula, we choose to use the formulas developed in (v) and (vi), which is easier. E.g., to show $\lim_{n\to\infty} A_n = 0$ when n=2m, $$A_{2m} = 2\pi \left(\frac{\pi}{1} \times \frac{\pi}{2} \times \frac{\pi}{3} \times \dots \times \frac{\pi}{m-1}\right)$$ The first three terms are greater than 1. All the other terms are smaller than 1, and get smaller and smaller. So $A_{2m} \to 0$ as $m \to \infty$. Other case can be proved similarly. 11.6 (2 points) Proof: We parametrize $c_{\mathbf{x}}$ by $c_{\mathbf{x}} = t\mathbf{x}$, where $t \in [0,1]$, then $$\int_{c_{\mathbf{x}}} \alpha = \int_{0}^{1} c^{*} \left(\sum_{i=1}^{n} g_{i} dx_{i} \right) = \sum_{i=1}^{n} \int_{0}^{1} g_{i}(t\mathbf{x}) x_{i} dt = \sum_{i=1}^{n} x_{i} \int_{0}^{1} g_{i}(t\mathbf{x}) dt = \beta$$ 11.7 (3 points) $$\phi^* \alpha = f(t\mathbf{x}) d(tx_{i_1}) \cdots d(tx_{i_k})$$ $$= f(t\mathbf{x}) (x_{i_1} dt + t dx_{i_1}) \cdots (x_{i_k} dt + t dx_{i_k})$$ $$= f(t\mathbf{x}) (\sum_{m=1}^k t^{k-1} dx_{i_1} \cdots (x_{i_m} dt) \cdots dx_{i_k} + t^k dx_I)$$ So $$\kappa \phi^* \alpha = \sum_{m=1}^k \int_0^1 f(t\mathbf{x}) t^{k-1} x_{i_m} dt (-1)^{m+1} dx_{i_1} \cdots d\hat{x}_{i_m} \cdots dx_{i_k}$$ $$= \sum_{m=1}^k (-1)^{m+1} \left(\int_0^1 f(t\mathbf{x}) t^{k-1} dt \right) x_{i_m} dx_{i_1} \cdots d\hat{x}_{i_m} \cdots dx_{i_k}$$