MATH 321 Manifold(sI]a:l)nd Differential Forms

Homework 2 Solution
Due September 13, 3:00 p.m.

2.4 (3 points) Solution: From f(tx) = #*f(x), we can obtain by taking
derivatives with respect to t on both sides that ", xi% = ktf71f(x). Let

t =1, we are then done. O
2.5 (5 points)
i) Proof:
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according to 'Hospital law. So, f is differential at 0, and f/(0) =0 O
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(ii) Proof: We work by induction. First of all f/(0) = 0 and f'(z) = 2=
for z # 0. Then it’s clear that f € C'(R). Assume f € C*(R), with f¥)(0) =
0 and f®¥(z) = gi—((z))e_l/x2 for # # 0, where P, and @y are polynomials

of z. Then we prove f(*) is continuously differentialable, f*+1)(0) = 0 and

fE(z) = %6_1/12 for + # 0, where Pryy and @Qpy4q are polynomials

of z. Indeed, similar to the case of & = 1, by replacing 1/z with h and the

fact that €" increases faster than any polynomials of A when h — oo, we can

conclude that the result desired. O
(iii) Solution: See the illustration below.

(5 points)
Proof:
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The second = is due to Leibnitz’s law. O

(ii) Proof: By (i), I'(n) = (n — 1)T'(n — 1) for n > 1. By induction,
I'(n) = (n—DII(1). As I'(1) = 1, we conclude I'(n) = (n — 1)! for positive
integers n. O

(iii) Proof:
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Figure 1: Graph of the function f(z) = e—1/2?
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2.7 (4 points)
(i) Proof: v =T(1/2) =2 fooo e~ du by 2.6 (iii) and by letting o = 0. So,

v = f_oooo e~ du. 0
(ii) Proof: By (i),y = [ e dr = 12 eV dy. So~? = I s e~ Y dady.
U

(iii) Proof: According to (ii) and polar coordinate, we have
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(iv) Proof: By (iii), v* = 7. So v = /7. O

1.7 Solution:
1) We start with the case of a square. See fisure 2.
q g

A square can have three singular status, which is obtained by collapsing
the whole square onto the straight line on which the edge AB lies. See figure
3.

We draw three nodes, marked by 1, 2 and 3, respectively, to stand for these
three singular status. Please see figure 4 for the illustration.

For status I, we have two possible choices of moving the square, either as
indicated by figure 5, or as indicated by figure 6.
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So the node 1 should have two branches. One goes to 3 and the other goes
to 2. See figure 7. (The arrows in the graph mean the direction of movement.)

Apply the same argument to node 2, we should get figure 8.

Finally, if we start from status III, we still have two choices. One is going
to I and the other is going to II. So we get figure 9.

O

(ii) The case of a parallelogram which is not a square is similar to the case

of square. The only difference is that the former case has only two singular
status: [ and II. The third singular status III will not appear as the lengths
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of edges are not equal. So, by similar analysis, we should get the graph of the
configuration space as indicated by figure 10.
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Figure 10: The configuration space of a parellelogram which is not a square



