MATH 321 Manifolds and Differential Forms (II)

Homework 5 Solution

Due October 11, 3:00 p.m.

4.6 (5 points) Proof: We only prove the case n=3.

$$g(\mathbf{x}) = \int_0^{x_1} f_1(t, x_2, x_3) dt + \int_0^{x_2} f_2(0, t, x_3) dt + \int_0^{x_3} f_3(0, 0, t) dt$$

So

$$dg = f_{1}(x_{1}, x_{2}, x_{3})dx_{1} + \left[\int_{0}^{x_{1}} \frac{\partial f_{1}}{\partial x_{2}}(t, x_{2}, x_{3})dt + f_{2}(0, x_{2}, x_{3})\right] dx_{2} + \left[\int_{0}^{x_{1}} \frac{\partial f_{1}}{\partial x_{3}}(t, x_{2}, x_{3})dt + \int_{0}^{x_{2}} \frac{\partial f_{2}}{\partial x_{3}}(0, t, x_{3})dt + f_{3}(0, 0, x_{3})\right] dx_{3}$$

$$= f_{1}(\mathbf{x})dx_{1} + \left[\int_{0}^{x_{1}} \frac{\partial f_{2}}{\partial x_{1}}(t, x_{2}, x_{3})dt + f_{2}(0, x_{2}, x_{3})\right] dx_{2}$$

$$+ \left[\int_{0}^{x_{1}} \frac{\partial f_{3}}{\partial x_{1}}(t, x_{2}, x_{3})dt + \int_{0}^{x_{2}} \frac{\partial f_{3}}{\partial x_{2}}(0, t, x_{3})dt + f_{3}(0, 0, x_{3})\right] dx_{3}$$

$$= f_{1}(\mathbf{x})dx_{1} + f_{2}(\mathbf{x})dx_{2} + f_{3}(\mathbf{x})dx_{3}$$

$$= \alpha$$

The second = is due to α is closed and hence $\partial f_i/\partial x_j = \partial f_j/\partial x_i$. The third = is due to fundamental theorem of calculus.

4.8 (4 points)

$$d[(k+1)g] = \sum_{i=1}^{n} d(x_i f_i(\mathbf{x})) = \sum_{i=1}^{n} \sum_{j=1}^{n} (\delta_{ij} f_i + x_j \frac{\partial f_i}{\partial x_j}) dx_j$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} (\delta_{ij} f_i + x_j \frac{\partial f_j}{\partial x_i}) dx_j$$

$$= \sum_{j=1}^{n} f_j dx_j + \sum_{j=1}^{n} dx_j \sum_{j=1}^{n} x_j \frac{\partial f_j}{\partial x_j}$$

$$= \alpha + \sum_{j=1}^{n} dx_j (kf_j)$$

$$= \alpha + k\alpha$$

$$= (k+1)\alpha$$

The third = comes from the fact α is closed and hence $\partial f_i/\partial x_j = \partial f_j/\partial x_i$. And the fifth = is by Exercise 2.4.

4.10 (5 points) Proof: Since β is exact, we can find a differential form γ such that $d\gamma = \beta$. Suppose α is a k-form, then

$$d((-1)^k \alpha \gamma) = (-1)^k (d\alpha)\gamma + (-)^k (-1)^k \alpha d\gamma = \alpha \beta$$

So, $\alpha\beta$ is exact.

4.11 (4 points) Proof: WLOG, we assume $\alpha = dx_I$, i.e. α is a monomial with constant coefficient 1. Here I is an increasing multi-indices of degree k. We let J be the index set complementary to I. We also use the notation ε_I and ε_J as defined in the notes (page 26). Then

$$*\alpha = *(dx_I) = \varepsilon_I dx_J, **\alpha = \varepsilon_I * (dx_J) = \varepsilon_I \varepsilon_J dx_I$$

We conclude $\varepsilon_I \varepsilon_J = (-1)^{k(n-k)} = (-1)^{kn+k}$ by the following equalities

$$dx = \varepsilon_I dx_I dx_J = \varepsilon_I (-1)^{k(n-k)} dx_J dx_I = \varepsilon_I (-1)^{k(n-k)} \varepsilon_J dx$$

So **
$$\alpha = (-1)^{kn+k} dx_I$$
.

- 5.4 (4 points)
- (i) Length=2(j-i)-1, sign=-1.
- (ii) Length=n(n-1)/2, sign= $(-1)^{n(n-1)/2}$.