MATH 321 Manifold(sI]a:l)nd Differential Forms

Homework 5 Solution

Due October 11, 3:00 p.m.

4.6 (5 points) Proof: We only prove the case n = 3.
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The second = is due to « is closed and hence df;/0x; = 0f;/0x;. The
third = 1s due to fundamental theorem of calculus. O
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The third = comes from the fact « is closed and hence df;/dx; = 0f;/0x;.
And the fifth = is by Exercise 2.4. O

4.10 (5 points) Proof: Since [ is exact, we can find a differential form ~
such that dy = . Suppose « is a k-form, then

d((~1)*av) = (-=1)*(da)y + (-)*(~1)"ady = of
So, af3 1s exact. O

4.11 (4 points) Proof: WLOG, we assume a = dxj, i.e. « is a monomial
with constant coefficient 1. Here [ is an increasing multi-indices of degree k.
We let J be the index set complementary to I. We also use the notation ¢;
and ¢y as defined in the notes (page 26). Then

ko = *(dry) = epdey, %k a = er* (dey) = ereydey
We conclude ere; = (—1)*n=F) = (~1)kn+k by the following equalities
dr = erdzdzy = 51(—1)k(”_k)d:vjd;z:1 = 51(—1)k(”_k)5Jd:r:
So * % a = (—1)**t*dz,. O
5.4 (4 points)

(i) Length=2(y —4) — 1, sign=—1.
(ii) Length=n(n — 1)/2, sign=(—1)"("=1/2,



