MATH 321 Manifolds and Differential Forms (II)

Homework 6 Solution

Due October 18, 3:00 p.m.

4.12 (6 points)	
(i) Proof: $(dx_I, dx_J) = \delta_{I,J}$ is obvious, so is the fact that dx_I 's form	an
orthonormal basis of the space of constant k-forms.	
(ii) Proof: Let $\alpha = \sum_{I} a_{I} dx_{I}$, then $(\alpha, \alpha) = \sum_{I} a_{I}^{2} \geq 0$ and $(\alpha, \alpha) = 0$	iff
$\alpha = 0.$	
(iii) Proof: $\alpha(*\beta) = \alpha \sum_I b_I \varepsilon_I dx_{I^c} = \sum_I a_I dx_I \sum_I b_I \varepsilon_I dx_{I^c} = \sum_I a_I b_I \varepsilon_I$	$dx_I dx_{I^c} =$
$\sum_{I} a_{I} b_{I} dx = (\alpha, \beta) dx_{1} dx_{2} \dots dx_{n}.$	
(iv) Proof: By (iii), $\beta(*\alpha) = (\beta, \alpha)dx = (\alpha, \beta)dx = \alpha(*\beta)$.	
(v) Proof: $(*\alpha, *\beta)dx = *\alpha(*\beta) = (*\alpha)\beta = \alpha(*\beta) = (\alpha, \beta)dx$.So
$(*\alpha, *\beta) = (\alpha, \beta).$	
4.13 (6 points) Solution: Just tedious computations. (Omitted).	
5.6 (5 points)	
(i) Solution: $\sigma^{-1} = (341652), \ \tau^{-1} = (625314), \ \sigma\tau = (562413) \ \text{and} \ \tau\sigma$	σ =
(415236).	
(ii) Solution: $\sigma^{-1} = (21345 \dots n), \ \tau^{-1} = (n23 \dots (n-2)(n-1)), \ \sigma n$	- =
$(n1345(n-2)(n-1)2)$ and $\tau\sigma = (2n345(n-2)(n-1)).$	
5.7 (3 points) Proof: Straightforward.	