MATH 418 COMPLEX VARIABLES Homework 1 Solution

Due January 30, 2001

C1. Solution: Expand the left side of this equality into $\sum_{k=0}^{k=n} {n \choose k} (\cos \theta)^k (i \sin \theta)^{(n-k)}$. Then compare the real parts and imaginary parts at both sides. \Box

C2. Proof: Let z be x+iy with x, y real numbers. Then, plug this representation into $w = \frac{z-1}{z+1}$, and ratioanlize the denominator, we get

$$w = \frac{x^2 + y^2 - 1 + 2iy}{(x+1)^2 + y^2}$$

So, w is imaginary if and only if $x^2 + y^2 = 1$ holds. This is obviously equivalent to the condition that |z| = 1. Since w exactly stands for the angle determined by -1, z, 1, we are done. \Box

C3. Proof: The polar coordinate representation of 1 + i is $\sqrt{2}(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4})$. So, by the formula in Problem 1 with $\theta = \frac{\pi}{4}$, we get the desired equality.

Let's denote I as

$$1 - \binom{n}{2} + \binom{n}{4} - \binom{n}{6} + \dots$$

and $II~\mathrm{as}$

$$\binom{n}{1} - \binom{n}{3} + \binom{n}{5} - \binom{N}{7} + \dots$$

By the same trick applied in Problem 1, we expand $(1+i)^n$ by binomial formula and get $(1+i)^n = I + iII$. So, it's clear that I is $2^{\frac{n}{2}} \cos \frac{n\pi}{4}$ and II is $2^{\frac{n}{2}} \sin \frac{n\pi}{4}$. \Box

C4. Proof: For the first two claims, use the polar coordinate representation of a complex number. For the rest of the claims, use the standard representation of a complex number, i.e. z = x + iy, with x, y real numbers. \Box

C5. Solution: The basic idea here is to replace z with its polar coordinate representation or its standard representation, and then find some equations which have geometric meanings.

(i) Rez > 0 defines the right half plane.

(ii) $b_1 < \Im z < b_2$ defines a strip delineated by the straight lines $y = b_1$ and $y = b_2$. (iii) $\Re \alpha z = a$ defines a straight line. (Recall the geometric meaning of $\Re \alpha z = a$.) (iv) $|z - \alpha| = r$ defines a circle centered at α with radius r.

(v) $|z - \alpha| < r$ defines a disc without boundry and with α the center, r the radius. (vi) $r_1 \leq |z| \leq r_2$ defines an anulus centered at 0.

(vii) $\Re \frac{1}{z} = 1$ defines the circle centered at $\frac{1}{2}$ with radius $\frac{1}{2}$. \Box

C6. Solution:

$$(1+i)^2 = 2i, \frac{3+4i}{1-2i} = -1+2i$$

$$z^{3} = (x^{3} - 3xy^{2}) + (3yx^{2} - y^{3})i, \bar{z}z = x^{2} + y^{2}$$

$$\frac{\bar{z}}{z} = \frac{x^2 - y^2 - 2xyi}{x^2 + y^2}, \frac{z - i}{1 - i\bar{z}} = \frac{2x - 2xy + i[x^2 - (y - 1)^2]}{x^2 + (y - 1)^2}.\Box$$

C7. Proof: Use the polar coordinate representation of z: $z = r \exp\{i\alpha\}$, we have $\Re(1/z) > 0$ if and only if $\Re\frac{1}{r}\exp\{-i\alpha\} > 0$, i.e. $\cos \alpha > 0$ and $\sin \alpha = 0$. So, $\alpha = 2k\pi$, for some integer k. By similar reasoning, we can find out $\Re z > 0$ if and only if α satisfies the above condition. So, $\Re\frac{1}{z} > 0$ if and only if $\Re z > 0$. \Box

C8. Solution: To see what transformation is going on, we will regard z as a point (r, α) in the plane, where $z = r \exp\{i\alpha\}$ is the polar coordinate representation of z. (i) $z' = iz : (r, \alpha) \to (r, \alpha + \frac{\pi}{2})$. This is a counter clockwise rotation at the degree $\frac{\pi}{2}$.

 $\begin{array}{l} \frac{\pi}{2}.\\ (\mathrm{ii})z'=2z:(r,\alpha)\to(2r,\alpha). \mbox{ This is an expansion along the direction of }z.\\ (\mathrm{iii})z'=-z:(r,\alpha)\to(r,\alpha+\pi). \mbox{ This is a counter clockwise rotation at the degree }\pi. \end{array}$

(iv)z' = -2iz: $(r, \alpha) \to (2r, \alpha - \frac{\pi}{2})$. So, this is a rotation combined with an expansion. \Box

C9. Solution: Let $\alpha = 2 + 3i, \beta = 5 + 7i$. Then, by the fact $|\alpha\beta|^2 = |\alpha|^2 |\beta|^2$, we have

$$962 = 13 \times 74 = |\alpha|^2 \times |\beta|^2 = |\alpha\beta|^2 = |-11 + 29i|^2 = 11^2 + 29^2$$