MATH 418 COMPLEX VARIABLES Homework 10 Solution

Due April 19, 2001

Note: If you have any questions about the solution, or you think there are some typos/errors in the solution, please e-mail me. I'll double-check it and then reply to you. Thank you.

C19. Solution:

(a) Yes. Since non-degenerate bilinear transformations are 1-1 and onto $\overline{\mathbb{C}}$.

(b) No. $\sin 0 = \sin \pi$.

(c) Yes. $z^2 = zt^2$ implies (z - z')(z + z') = 0. But $\{|z - 1| < 1\}$ has no points symmetric with respect to 0, so z + z' can't be 0. Hence z = z'. \Box

5. Proof: We only need to show $\left|\frac{h(z)-h(0)}{h(0)}\right| < 1$ for z small enough. Indeed, for z small enough, $\left|\frac{h(z)-h(0)}{z}\right| < 1 + |h'(0)|$ by the definition of derivative. So $\left|\frac{h(z)-h(0)}{h(0)}\right| < (1 + |h'(0)|)\frac{|z|}{|h(0)|} \longrightarrow 0$ as $z \longrightarrow 0$. So, for z small enough, L(z) is well-defined and is an analytic logarithm of h(z)/h(0) near 0. \Box

6. Proof: H(z) is the composition of $[h(0)]^{1/n}e^z$ and L(z)/n, which is analytic around 0. So, H(z) is analytic for small z and routine computation yields $[H(z)]^n = h(z)$. \Box

1. Proof: We use the following theorem, which can be found in almost all textbooks: If f and g are analytic in a domain $D, E \subset D$ has a limit point which belongs to D, and f = g on E, then f = g on D.

In this problem, $D = \mathbb{C}$, E is a segment of the real axis. So, these two entire functions agree on \mathbb{C} . \Box

2. Proof: By Theorem 7.6, page 151 in the textbook, |1/f| assumes its maximum value on the boundary. So |f| assumes its minimum value on the boundary. \Box