MATH 418 COMPLEX VARIABLES Homework 4 Solution

Due February 20, 2001

Note: If you have any questions about the solution, or you think there are some typos/errors in the solution, please e-mail me. I'll double-check it and then reply to you. Thank you.

1.

Solution: We take the contour C as the circle $|z|=2$. Replace z with its parametric representation $z = e^{i\theta}$, with $0 \le \theta < 2\pi$. Then $\int_C f(z)dz = \int_0^{2\pi} e^{-i\theta}ie^{i\theta}d\theta = 2\pi i \ne$ 0. So, the conclusion of Theorem 3.4 can fail if the region is not assumed to be a star domain.

3.

Proof: WLOG, we assume $a > 0$. Take the contour C as the rectangle with vertices at $-b$, b , $b + ia$ and $-b + ia$, where b is a positive number. We take the orientation of C as clockwise. Let $f(z) = e^{-z^2}$, then $\int_C f(z)dz = \int_{-b}^b f(x+ia)dx + \int_a^0 f(b+)$ $\int_0^{\infty} f(x)dx + \int_0^a f(-b+iy)dy$. We claim $\int_a^0 f(b+iy)dy$ and $\int_0^a f(-b+iy)dy$ go to 0, as $b \longrightarrow +\infty$. Indeed, we have

$$
\begin{aligned} |\int_a^0 f(b+iy)dy| &\le \int_0^a |f(b+iy)|dy = \int_0^a |e^{-b^2}e^{-2byi}e^{y^2}|dy \\ &= \int_0^a e^{-b^2}e^{y^2}dy \le e^{-b^2}ae^{a^2} \xrightarrow{b \to +\infty} 0 \end{aligned}
$$

Similarly, $\int_0^a f(-b+iy)dy \longrightarrow 0$ as $b \longrightarrow +\infty$. Since $f(z)$ is analytic in the whole plane, $\int_C f(z)dz = 0$. Hence if we let $b \longrightarrow +\infty$, we have $0 = I(a) + \int_{\infty}^{\infty} f(x)dx$. So, $I(a) = \int_{-\infty}^{\infty} f(x)dx$ (constant independent of a).

1.

Proof: Let $g(z) = e^{f(z)}$, then $g(z)$ is analytic is an entire function since it's the composition of two entire functions. Note $|g(z)| = |e^{Ref(z) + iImf(z)}| = e^{Ref(z)} \leq$ e^M . So, $g(z)$ is bounded over the whole plane. By Liouville's theorem, $g(z)$, and hence $f(z)$, is constant. \Box

9a. Note: You can not take it for granted that you can take derivative inside the integration signal. You have to PROVE that.

Proof: $\forall h \in \mathbb{C}$, we only need to show $\left| \frac{F(z+h)-F(z)}{h} - i \int_a^b e^{izt} tf(t)dt \right| \longrightarrow 0$ as $h \longrightarrow 0$. Indeed, we have

$$
\left|\frac{F(z+h)-F(z)}{h}-i\int_{a}^{b}e^{izt}tf(t)dt\right| = \left|\int_{a}^{b}\left[\frac{e^{iht}-1}{h}-it\right]e^{izt}f(t)dt\right| \leq \int_{a}^{b}\left|\frac{e^{iht}-1}{h}-it\right| |e^{izt}f(t)|dt
$$

Since $f(t)$ is continuous, it's bounded over the compact set [a, b]. Let $M =$ $\max_{a\leq t\leq b} |f(t)|$, then

$$
|\frac{F(z+h)-F(z)}{h}-i\int_{a}^{b}e^{izt}tf(t)dt|\leq M(b-a)\sup_{a\leq t\leq b}|\frac{e^{iht}-1}{h}-it|
$$

Replace *iht* with ω . Since t is between a and b, $\omega \longrightarrow 0$ uniformly as $h \longrightarrow 0$. Note $\left|\frac{e^{iht}-1}{h}-it\right|=\left|\frac{e^{\omega}-1}{\omega}it-it\right|\leq\left|\frac{e^{\omega}-1}{\omega}-1\right|(|a|\vee|b|).$ By the definition of derivative of 1

an entire function at one point, in particularly, the derivative of e^{ω} at 0, we know $\left|\frac{e^{\omega}-1}{\omega}-1\right|\longrightarrow 0$ as h, and hence ω , goes to 0. Thus we achieved the aim we claimed at the beginning. \Box