
MATH 418 COMPLEX VARIABLES

Homework 6 Solution

Due March 6, 2001

Note: If you have any questions about the solution, or you think there are some
typos/errors in the solution, please e-mail me. I’ll double-check it and then reply
to you. Thank you.

1. Solution: This kind of problem can be solved quite easily by looking at a
function’s Laurent series. Unfortunately, the most useful theorem is not in section
8, but in section 9 (Theorem 9.4, page 167). Of course, straightforward observation
is also beneficial in some cases.
ez: ez is analytic everywhere in C. To judge the property of ∞, we consider all the
three possibilities. First, ∞ cannot be removable by problem 3, since ez is not a
constant function. Second, ∞ is not a pole, since |ein| ≤ 1, no matter how large
n ∈ N is. So ∞ is an essential singularity.
cos z
z : Only 0 or ∞ could have problems since cos z

z is analytic elwhere. Note the
Laurent series of cos z

z =
∑∞
n=2k

(iz)n

zn! , where k ∈ N∪{0}, we conclude 0 is a pole by
Theorem 9.4, since 1/z appears in the series. To to see the property of ∞, replace
z with 1/ζ, it’s clear that ζ = 0 is an essential singularity, by Theorem 9.4. Hence
∞ is an essential singularity of cos z

z .
ez−1
z(z−1) : 1 is a pole and 0 is removable. Replace z with 1/ζ, we get (e

1
ζ − 1) ζ2

1−ζ .
It’s clear that this function is not differenctiable at ζ = 0(argue by direct compu-
tation according to the definition of being analytic). So, ∞ cannot be removable.
Furthermore, if z −→ ∞ along the negative x-axis, then ez−1

z(z−1) goes to 0. So, ∞
cannot be a pole. Hence, ∞ has to be an essential singularity.
z2−1
z2+1 : This function is equal to 1 − 2

z2+1 . So, i and −i are two poles. Replace z

with 1/ζ, we get 1−ζ2
1+ζ2 . This new function is differentiable at ζ = 0. So, ∞ is a

removable singularity of the original function.
z5

z3+z : By similar arguement, i and −i are two poles.0 is a removable singularity.
And ∞ is also a pole, since after replacing z with 1/ζ, we get 1

ζ2+ζ4 .
ecosh z: cosh z is an entire function, so is ez. Since the function under consideration
is the composition of two entire functions, it’s entire. To judge ∞, note first by
problem 3, ∞ cannot be removable. Let z = in where n is just a natural number.
Then we can see, as n −→ +∞, henc z −→ ∞, ecosh z is bounded. So, ∞ cannot
be a pole. So, ∞ has to be an essential singularity.
z(z−π)2

(sin z)2 : We first solve the equation eiz = e−iz and get solutions z = kπ where
k ∈ Z. For k 6= 1, 0, kπ becomes a pole since sin z = 0 here. For 0, as z −→ 0,
sin z
z −→ 1, by the definition of the derivative of sin z at 0. So, 0 is a pole. For

π, note sin(z − π) = − sin z, we again return to the previous case. But this time
the dominator sin(z − π) and the nominator (z − π) have the same power. So,
z(z−π)2

(sin z)2 −→ π as z −→ π. Hence, π is a removable singularity. Let z −→ ∞ along
the positive x-axis, the function has no limit. So,∞ cannot be a pole or removable.
So, it’s an essential singularity. 2
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Solution: f(z) = (z2−1)(z−2)3

(sinπz)3 . So we have the following equalities: 1/f(z) =
(sinπz)3

(z+1)(z−1)(z−2)3 = − (sin pi(z−1))3

(z+1)(z−1)(z−2)3 = − (sinπ(z+1))3

(z+1)(z−1)(z−2)3 = (sin pi(z−2))3

(z+1)(z−1)(z−2)3 . So,
it’s clear that 1,−1, 2 are removable singularities. Let z = n where n is a natural
number, then 1/f(z) = 0 for any n. So, ∞ cannot be a pole. Let z = −in, then
1/f(z) −→ ∞ as n −→ ∞. So, ∞ cannot be removable. Therefore ∞ has to be
essential. 2

3.
Proof: If a function is analytic in the extended plane, then in particular, it’s analytic
at∞. So it must have a definite finite value at∞ and is continuous at∞. Hence, it
is bounded in a neighbourhood of ∞, say, {z : |z| > M} for some positive number
M. Meanwhile, this function is bounded in the closed disc {z : |z| ≤ M}. So, this
analytic function is bounded on the whole plane. By Liouville’s Theorem, it has to
be a constant.2

4.
Proof: To find the principal part of the function at -1, we replace z+ 1 with ζ, and
get

8z3(z + 1)−1(z − 1)−2 = 2
(ζ − 1)3

ζ(1− ζ + ζ2

4 )
= 2

ζ3 − 3ζ2 + 3ζ − 1
ζ

∞∑
k=0

(ζ − ζ2

4
)k

So, it’s clear that the principal part is −2/ζ. Replace ζ with z + 1, we see the
pricipal part of the original function at −1 is −2

z+1 .
To find the pricipal part of the function at 1, we replace z − 1 with ζ, and get

8z3(z + 1)−1(z − 1)−2 =
8(ζ + 1)3

ζ2(ζ + 2)
= 4× ζ3 + 3ζ2 + 3ζ + 1

ζ2(1 + ζ
2 )

= 4× ζ3 + 3ζ2 + 3ζ + 1
ζ2

∞∑
k=0

(−ζ
2

)k

So the principla part is 4× [ 3ζ+1
ζ2 + 1

ζ2 (− ζ2 )] = 4
ζ2 + 10

ζ . This is what we want. 2

5.
Proof: Replace z with 1/ζ in (z2 + 1)2/(z2 − z), and take advantage of geometric
series, we get (z2 + 1)2/(z2 − z) = ( 1

ζ2 + 2 + ζ2)
∑∞
n=0 ζ

n. So, the principle part is
1
ζ2 + 1

ζ . Replace 1/ζ with z, we get z2 + z. 2

7.
Proof: ∀r > 0, θ ∈ R, to let ez = ex+iy = reiθ, we only need to let x = log r and
y = θ. Since |ez| = ex > 0, ez cannot assume 0.
sin z = eiz−e−iz

2i . If we let z = x+iy and let a+bi be any complex number, we need to
see if the equation sin z = a+bi has a solution in any neighbourhood of∞. Indeed,
this equation can be reduced to (e−y − ey) cosx = −2b, and (e−y + ey) sinx = 2a.
This alwasy has solution evne if one of, or both of x, y goes to ∞(Actually, to
complete this proof, you should solve this system of equations and find the explicit
formula for a and b, in terms of x and y. Or you may want to calculate the Jacobian
determinant of a, b with respect to x, y, i.e. ∂(a,b)

∂(x,y) ). 2
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9.
Proof:

(z − 1)/(z + 1) =
1− 1/z
1 + 1/z

= (1− 1
z

)(
∞∑
k=0

(−1)k/zk) = 1 + 2
∞∑
k=1

(−1
z

)k

. 2

1.
Proof: By definition (Theorem 9.2 page 164), Laurent coefficient

aj =
1

2πi

∫
C

f(z)
(z − α)j+1

dz

In this problem, α = 0. And

aj =
1

2πi

∫
C

f(z)
zj+1

dz =
k=n∑
k=−m

Ak
2πi

∫
C

zk

zj+1
dz =

k=n∑
k=−m

Ak
2πi

∫
C

zk−j−1dz

Note
1

2πi

∫
C

zk−j−1dz =
{

1 if k = j
0 otherwise

So, we conclude aj = Aj for −m ≤ j ≤ n and aj = 0 otherwise. 2
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