MATH 418 COMPLEX VARIABLES Homework 6 Solution

Due March 6, 2001

Note: If you have any questions about the solution, or you think there are some typos/errors in the solution, please e-mail me. I'll double-check it and then reply to you. Thank you.

1. Solution: This kind of problem can be solved quite easily by looking at a function's Laurent series. Unfortunately, the most useful theorem is not in section 8, but in section 9 (Theorem 9.4, page 167). Of course, straightforward observation is also beneficial in some cases.

 e^z : e^z is analytic everywhere in \mathbb{C} . To judge the property of ∞ , we consider all the three possibilities. First, ∞ cannot be removable by problem 3, since e^z is not a constant function. Second, ∞ is not a pole, since $|e^{in}| \leq 1$, no matter how large $n \in \mathbb{N}$ is. So ∞ is an essential singularity.

 $\frac{\cos z}{z}$: Only 0 or ∞ could have problems since $\frac{\cos z}{z}$ is analytic elwhere. Note the Laurent series of $\frac{\cos z}{z} = \sum_{n=2k}^{\infty} \frac{(iz)^n}{zn!}$, where $k \in \mathbb{N} \cup \{0\}$, we conclude 0 is a pole by Theorem 9.4, since 1/z appears in the series. To to see the property of ∞ , replace z with $1/\zeta$, it's clear that $\zeta = 0$ is an essential singularity, by Theorem 9.4. Hence ∞ is an essential singularity of $\frac{\cos z}{z}$.

 ∞ is an essential singularity of $\frac{\cos z}{z}$. $\frac{e^z-1}{z(z-1)}$: 1 is a pole and 0 is removable. Replace z with $1/\zeta$, we get $(e^{\frac{1}{\zeta}}-1)\frac{\zeta^2}{1-\zeta}$. It's clear that this function is not differenctiable at $\zeta = 0$ (argue by direct computation according to the definition of being analytic). So, ∞ cannot be removable. Furthermore, if $z \longrightarrow \infty$ along the negative x-axis, then $\frac{e^z-1}{z(z-1)}$ goes to 0. So, ∞ cannot be a pole. Hence, ∞ has to be an essential singularity.

cannot be a pole. Hence, ∞ has to be an essential singularity. $\frac{z^2-1}{z^2+1}$: This function is equal to $1 - \frac{2}{z^2+1}$. So, *i* and -i are two poles. Replace *z* with $1/\zeta$, we get $\frac{1-\zeta^2}{1+\zeta^2}$. This new function is differentiable at $\zeta = 0$. So, ∞ is a removable singularity of the original function.

 $\frac{z^5}{z^3+z}$: By similar argument, *i* and -i are two poles.0 is a removable singularity. And ∞ is also a pole, since after replacing *z* with $1/\zeta$, we get $\frac{1}{\zeta^2+\zeta^4}$.

 $e^{\cosh z}$: $\cosh z$ is an entire function, so is e^z . Since the function under consideration is the composition of two entire functions, it's entire. To judge ∞ , note first by problem 3, ∞ cannot be removable. Let z = in where n is just a natural number. Then we can see, as $n \longrightarrow +\infty$, henc $z \longrightarrow \infty$, $e^{\cosh z}$ is bounded. So, ∞ cannot be a pole. So, ∞ has to be an essential singularity.

 $\frac{z(z-\pi)^2}{(\sin z)^2}$: We first solve the equation $e^{iz} = e^{-iz}$ and get solutions $z = k\pi$ where $k \in \mathbb{Z}$. For $k \neq 1, 0, k\pi$ becomes a pole since $\sin z = 0$ here. For 0, as $z \longrightarrow 0, \frac{\sin z}{z} \longrightarrow 1$, by the definition of the derivative of $\sin z$ at 0. So, 0 is a pole. For π , note $\sin(z-\pi) = -\sin z$, we again return to the previous case. But this time the dominator $\sin(z-\pi)$ and the nominator $(z-\pi)$ have the same power. So, $\frac{z(z-\pi)^2}{(\sin z)^2} \longrightarrow \pi$ as $z \longrightarrow \pi$. Hence, π is a removable singularity. Let $z \longrightarrow \infty$ along the positive x-axis, the function has no limit. So, ∞ cannot be a pole or removable. So, it's an essential singularity. \Box

2. Solution: $f(z) = \frac{(z^2-1)(z-2)^3}{(\sin \pi z)^3}$. So we have the following equalities: $1/f(z) = \frac{(\sin \pi z)^3}{(z+1)(z-1)(z-2)^3} = -\frac{(\sin pi(z-1))^3}{(z+1)(z-1)(z-2)^3} = -\frac{(\sin n(z+1))^3}{(z+1)(z-1)(z-2)^3} = \frac{(\sin pi(z-2))^3}{(z+1)(z-1)(z-2)^3}$. So, it's clear that 1, -1, 2 are removable singularities. Let z = n where n is a natural number, then 1/f(z) = 0 for any n. So, ∞ cannot be a pole. Let z = -in, then $1/f(z) \longrightarrow \infty$ as $n \longrightarrow \infty$. So, ∞ cannot be removable. Therefore ∞ has to be essential. \Box

3.

Proof: If a function is analytic in the extended plane, then in particular, it's analytic at ∞ . So it must have a definite finite value at ∞ and is continuous at ∞ . Hence, it is bounded in a neighbourhood of ∞ , say, $\{z : |z| > M\}$ for some positive number M. Meanwhile, this function is bounded in the closed disc $\{z : |z| \le M\}$. So, this analytic function is bounded on the whole plane. By Liouville's Theorem, it has to be a constant. \Box

4.

Proof: To find the principal part of the function at -1, we replace z + 1 with ζ , and get

$$8z^{3}(z+1)^{-1}(z-1)^{-2} = 2\frac{(\zeta-1)^{3}}{\zeta(1-\zeta+\frac{\zeta^{2}}{4})} = 2\frac{\zeta^{3}-3\zeta^{2}+3\zeta-1}{\zeta}\sum_{k=0}^{\infty}(\zeta-\frac{\zeta^{2}}{4})^{k}$$

So, it's clear that the principal part is $-2/\zeta$. Replace ζ with z + 1, we see the principal part of the original function at -1 is $\frac{-2}{z+1}$.

To find the pricipal part of the function at 1, we replace z - 1 with ζ , and get

$$8z^{3}(z+1)^{-1}(z-1)^{-2} = \frac{8(\zeta+1)^{3}}{\zeta^{2}(\zeta+2)} = 4 \times \frac{\zeta^{3}+3\zeta^{2}+3\zeta+1}{\zeta^{2}(1+\frac{\zeta}{2})} = 4 \times \frac{\zeta^{3}+3\zeta^{2}+3\zeta+1}{\zeta^{2}} \sum_{k=0}^{\infty} (-\frac{\zeta}{2})^{k} = 0$$

So the principla part is $4 \times \left[\frac{3\zeta+1}{\zeta^2} + \frac{1}{\zeta^2}(-\frac{\zeta}{2})\right] = \frac{4}{\zeta^2} + \frac{10}{\zeta}$. This is what we want. \Box

5. Proof: Replace z with $1/\zeta$ in $(z^2 + 1)^2/(z^2 - z)$, and take advantage of geometric series, we get $(z^2 + 1)^2/(z^2 - z) = (\frac{1}{\zeta^2} + 2 + \zeta^2) \sum_{n=0}^{\infty} \zeta^n$. So, the principle part is $\frac{1}{\zeta^2} + \frac{1}{\zeta}$. Replace $1/\zeta$ with z, we get $z^2 + z$. \Box

7.

Proof: $\forall r > 0, \theta \in \mathbb{R}$, to let $e^z = e^{x+iy} = re^{i\theta}$, we only need to let $x = \log r$ and $y = \theta$. Since $|e^z| = e^x > 0$, e^z cannot assume 0.

 $\sin z = \frac{e^{iz} - e^{-iz}}{2i}$. If we let z = x + iy and let a + bi be any complex number, we need to see if the equation $\sin z = a + bi$ has a solution in any neighbourhood of ∞ . Indeed, this equation can be reduced to $(e^{-y} - e^y) \cos x = -2b$, and $(e^{-y} + e^y) \sin x = 2a$. This always has solution evne if one of, or both of x, y goes to ∞ (Actually, to complete this proof, you should solve this system of equations and find the explicit formula for a and b, in terms of x and y. Or you may want to calculate the Jacobian determinant of a, b with respect to x, y, i.e. $\frac{\partial(a,b)}{\partial(x,y)}$). \Box

9. Proof:

$$(z-1)/(z+1) = \frac{1-1/z}{1+1/z} = (1-\frac{1}{z})(\sum_{k=0}^{\infty}(-1)^k/z^k) = 1 + 2\sum_{k=1}^{\infty}(-\frac{1}{z})^k$$

. □ 1.

Proof: By definition (Theorem 9.2 page 164), Laurent coefficient

$$a_j = \frac{1}{2\pi i} \int_C \frac{f(z)}{(z-\alpha)^{j+1}} dz$$

In this problem, $\alpha = 0$. And

$$a_j = \frac{1}{2\pi i} \int_C \frac{f(z)}{z^{j+1}} dz = \sum_{k=-m}^{k=n} \frac{A_k}{2\pi i} \int_C \frac{z^k}{z^{j+1}} dz = \sum_{k=-m}^{k=n} \frac{A_k}{2\pi i} \int_C z^{k-j-1} dz$$

Note

$$\frac{1}{2\pi i}\int_C z^{k-j-1}dz = \left\{ \begin{array}{ll} 1 & \text{if } k=j\\ 0 & \text{otherwise} \end{array} \right.$$

So, we conclude $a_j = A_j$ for $-m \le j \le n$ and $a_j = 0$ otherwise. \Box