
MATH 418 COMPLEX VARIABLES
Homework 7 Solution

Due March 15, 2001

Note: If you have any questions about the solution, or you think there are some
typos/errors in the solution, please e-mail me. I’ll double-check it and then reply
to you. Thank you.

C13. Proof: Suppose z is such that |z| = ρ ∈ (|β|, |γ|), then we have
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So, the series above converges uniformly on the circle |z| = ρ.2

C14.
(i) Proof: Since α is an isolated singularity of f(z), there exists a neighborhood
U of α, such that f(z) is analytic in U\{α}. Then g ◦ f must be also analytic in
U\{α}, for g is entire. Thus α has to be an isolated singularity of g ◦ f .
(ii) If α is a removable singularity of f , then it must be also a removable singularity
of g ◦ f .
Proof: We note ∀z ∈ U\{α}, where U is defined as above, g◦f is differentiable at z.
To see this, note lim4z−→0

g(f(z+4z))−g(f(z))
4z = lim4z−→0

g(f(4z+z))−g(f(z))
f(4z+z)−f(z)

f(4z+z)−f(z)
4z .

Since g is entire, it is differentiable at f(z), so the first term in the RHS of the above
equality has a limit. And since f is analytic in U\{α}, the second term in the RHS
of the above equality has a limit, for it’s just by definition the derivative of f at
the point z. Hence, lim4z−→0

g(f(z+4z))−g(f(z))
4z exists, i.e. g ◦ f is analytic at z.

Since z is arbitrarily chosen, we conclude g ◦ f is analytic in U\{α}. And it’s clear
that if f can be continuously extended to α, then g ◦ f is also able to continuously
extended to α. So, α is a removable singularity for g ◦ f . 2

Problems in Levinson and Redheffer

2. Solution:
(i) f(z) = 1

z(z−1) : The singularities are 0 and 1. Res(f ; 0) = −1, Res(f ; 1) = 1.
(ii) f(z) = z

z4+1 : The singularites are e3πi/4, eπi/4, e−πi/4 and e−3πi/4. They are
all poles of order 1. We use formula (2.4) on page 191, and conclude the residues
are i/4,−i/4, i/4, and −i/4, respectively.
(iii) f(z) = sin z

z2(π−z) : The singularities are 0 and π. Res(f ; 0) = 1/π, andRes(f ;π) =
0.
(iv) f(z) = zeiz

(z−π)2 : The singularity is π. The residue is −πi− 1.

(v) f(z) = z3+5
(z4−1)(z+1) : The singularities are 1, −1, i and −i. The residues are,

respectively, 3/4, −9/4, (3 + 2i)/4, and (3− 2i)/4. 2

3. Proof: (i) In C, the integrand has two singularities: i/2 and −i/2. So,∫
C
f(z)dz = 2πi[Res(f ; i/2)+Res(f ;−i/2)] = 2πi[ eπz

4(z+i/2) |z=i/2+ eπz

4(z−i/2) |z=−i/2] =
πi. This result remains the same when C is the circle {|z| = 2}, since these two
contours contain the same singularities. 2
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(ii) The singularity of the integrand is 0. So,
∫
c
ez

z3 dz = 2πi d
2

dz2 e
z|z=0/2! = πi.

The result remains the same when C is the circle {|z| = 2}, since these two contours
contain the same singularities. 2

(iii) ∫
C

ez

(z2 + z − 3/4)2
dz =

∫
C

ez

(z + 3/2)2(z − 1/2)2
dz

= 2πi
d

dz
(

ez

(z + 3/2)2
)|z=1/2 = 0

When the contour is changed, the result is also going to changed since the second
contours includes one more singularity. Tedious computation shows the integral is
πie−3/2. 2

6. Proof: Just follow the hint. First of all, LHS of the equality in the hint is
2πi×Res(f ; i) = 2πi× 1/(2i) = π. The first term of RHS tends to

∫∞
∞

dx
1+x2 as R

goes to ∞. To see the second term goes to 0 as R goes to ∞, we note∣∣∣∣∫
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as R goes to ∞. 2

1. Remark: The solutions here are omitted since it’s sort of tedious computation.
And the contours can always be chosen as {z : z ∈ R,−R < z < R} ∪ {z : z =
Reiθ, 0 ≤ θ ≤ π}. The answers for the integrals are π/

√
2, 2π/3, π/3, π/2, π/2. 2

2a. Remark: The procedure is standard. So, I’ll omit the complete proof, but
point out the contour and integrand chosen in each problem and some tricky details.
However, this doesn’t mean they are the only feasible integrands and contours.
(1)The contour can be chosen as {z ∈ R : −R < z < R,R > 0} ∪ {z = Reiθ : 0 ≤
θ ≤ π}. The integrand can be chosen as eiz

z2+1 .
(2)The contour can be chosen as {z ∈ R : −R < z < R,R > 0} ∪ {z = Reiθ : 0 ≤
θ ≤ π}. The integrand can be chosen as zeiz

1+z2 . But you have to be very careful of
the estimation: you might get something like∫ π

0

R2R− sin θ

R2 − 1
dθ

You cannot hastily claim this term goes to 0 as R goes to ∞, since the integrand
is equal to R2

R2−1 at 0 and π, and the limit of this as R goes to ∞ is 1. However,
we can still show the integral goes to 0 as R goes to ∞ by the following way: take
any small positive number δ, and split up the integral into two parts∫ π

0

R2R− sin θ

R2 − 1
dθ =

∫ π−δ

δ

R2R− sin θ

R2 − 1
dθ +

∫
θ∈[0,δ]∪[π−δ,π]

R2R− sin θ

R2 − 1
dθ

The second term is smaller than 4δ, since the total length of the integration interval
is 2δ while the integrand is no more than 2 for R large enough. As to the first term,
recall the graph of sin θ over the interval [0, π] and you can see sin θ ≥ sin δ > 0.
Now, as R goes to +∞, the integrand is tending to 0, since

R2R− sin θ

R2 − 1
≤ R2R− sin δ

R2 − 1
2



And the latter one tends to 0 because of the influence of R− sin δ.
(3)The contour can be chosen as {z ∈ R : −R < z < R,R > 0} ∪ {z = Reiθ : 0 ≤
θ ≤ π}. The integrand can be chosen as eiz

(z2+1)2 .

3. Solution: As usual, we take the contour C as {z : z ∈ R,−R < z < R} ∪ {z :
z = Reiθ, 0 ≤ θ ≤ π}, and the function f(z) = eiz

(z2+a2)(z2+b2) . f(z) has singularities
ai,−ai, bi, and bi. Since the real parts of a and b are both positive, the singularities
falling into C are ai and bi. So,∫
C

f(z)dz = 2πi
[

eiz

(z2 + a2)(z + bi)
|z=bi +

eiz

(z2 + b2)(z + ai)
|z=ai

]
=

π

a2 − b2
(
e−b

b
− e−a

a
)

We define {z : z ∈ R,−R < z < R} as II, and {z : z = Reiθ, 0 ≤ θ ≤ π} as I. And
note ∣∣∣∣∫

I

f(z)dz
∣∣∣∣ =

∣∣∣∣∫ π

0

ei(R cos θ+i sin θ)

(R2e2θi + a2)(R2e2θi + b2)
iReiθdθ

∣∣∣∣
≤
∫ π

0

Re−R sin θ

(R2 − |a|2)(R2 − |b|2)
dθ ≤ π R

(R2 − |a|2)(R2 − |b|2)
It’s clear that the last term goes to 0 as R goes to +∞. So, we finally get

π

a2 − b2
(
e−b

b
− e−a

a
) =

∫ +∞

−∞

eix

(x2 + a2)(x2 + b2)
dx =

∫ +∞

−∞

cosx
(x2 + a2)(x2 + b2)

dx

The last ”=” is because sin x
(x2+a2)(x2+b2) is an odd function and it vanishes under the

integration over the whole real line.2
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