MATH 418 Function Theory Homework 2 Solution

Due February 6

Section 1.4

- 2. (2 points) Solution: Rez > 1, 0 < |z| < 1, Imz < 2|z|, |z 1| < |z + i| stand for domains. $|z| \le 1$ is not a domain, since it's closed. And the last one, $2|z^2 1| < 1$, is not, since it's not connected (the existence of z^2 in the formula makes the pre-image consist of two sheaves).
 - 3. (3 points) Solution:
- (i) $\omega = z^3$ maps Argz to 3Argz mod 2π . In order that the ω plane is just covered once, we should have $0 \le \theta < 2\pi/3$.
- (ii) $\omega = z^4$ maps Argz to 4Argz mod 2π . In order that the ω plane is just covered once, we should have $0 \le \theta < \pi/2$.
- (iii) $\omega = z^6$ maps Argz to 6Argz mod 2π . In order that the ω plane is just covered once, we should have $0 \le \theta < \pi/3$.
 - 4. (6 points) Solution:
- (i) $\omega = -z$: $g(\omega) = -\omega$, $R = \mathbb{C}$.
- (ii) $\omega = 1/z$: $g(\omega) = 1/\omega$, $R = \mathbb{C} \{0\}$.
- (iii) $\omega = (1-z)/(1+z)$: $g(\omega) = (1-\omega)/(1+\omega), R = \mathbb{C} \{-1\}.$
- (iv) $\omega = z^2$: $g(\omega) = \sqrt{|\omega|} e^{iArg\omega/2}$, $R = \{z : 0 \le Argz < \pi\}$.
- $(v) \omega = z^3 : g(\omega) = |\omega|^{1/3} e^{iArg\omega/3}, R = \{z : 0 \le Argz < 2\pi/3\}.$
- (vi) $\omega = (z-1)^4 + i$: $g(\omega) = |\omega i|^{1/4} e^{iArg(\omega i)/4} + 1$, $R = \{z : 0 \le Arg(z-1) < \pi/2\}$.

Section 1.5

- 1. (5 points)
- (a) Solution: nowhere; 0; -1; roots of $z^3 + 1 = 0$, i.e. -1, $(1 \sqrt{3}i)/2$ and $(1+\sqrt{3}i)/2$; roots of $z^4-16 = 0$, i.e. -2, 2, 2i and -2i; roots of $z^8+z^5-z^4-z=0$, i.e. 1, -1, i, -i, 0, $(1-\sqrt{3}i)/2$ and $(1+\sqrt{3}i)/2$.
- (b) Solution: (z+1)/(z+1) has a removable discontinuity at -1 and it should be defined 1 there to remove the discontinuity. $(z^4-z^2)/(z^8+z^5-z^4-z)$ has removable discontinuity at 0 and 1. To remove the discontinuity, it should be defined 0 and 1/4, respectively.
- (c) Solution: Replace z with $1/\zeta$, we transform the above functions into the following ones: $1/\zeta$, ζ , $(1+\zeta^2)/(\zeta+\zeta^2)$, $2\zeta^3/(1+\zeta^3)$, $(1+\zeta)/(1+\zeta)$,

 $(1+16\zeta^4)/(1-16\zeta^4)$, and $(\zeta^4-\zeta^6)/(1+\zeta^3-\zeta^4-\zeta^7)$. As $\zeta\to 0$, their values, respectively, has no limit in \mathbb{C} ; has limit 0; has no limit in \mathbb{C} ; has limit 0; has limit 1; has limit 1.

- 5. (3 points) Solution: It seems reasonable to define $a^{\sqrt{2}}$ as the product $a \times a^{2/5} \times a^{1/100} \times a^{1/250} \times \ldots$ But difficulties arise. First, we need to know if the product is convergent. Second, equation $z^n = z_0$ has n solutions and hence it's not clear what value should be assigned to $a^{1/5}$. Acutually, as we shall see later, $a^{\sqrt{2}}$ has infinitely many values.
- 6. (2 points) The proof is exactly what the hint suggests, and is very easy. So we skip it over. \Box

Additional problems on chapter 1

- 1.2 (4 points) The proof is long, tedious, and easy. So I skip it over. \Box
- 1.4 (5 points) Proof: We work by induction.

For n=1, we choose $P_1(x) = x$. It's clearly unique.

Assume for $n \leq m$, the claim is true. Then for n=m+1, we have

$$\begin{split} z^{m+1} + \frac{1}{z^{m+1}} - (z + \frac{1}{z})^{m+1} &= -\sum_{k=1}^{m} C_{m+1}^{k} z^{k} \frac{1}{z^{m+1-k}} \\ &= -\sum_{k=1}^{m} [C_{m+1}^{k} z^{k} \frac{1}{z^{m+1-k}} + C_{m+1}^{m+1-k} z^{m+1-k} \frac{1}{z^{k}}] \\ &= \sum_{k=1}^{m} C_{m+1}^{k} [\frac{1}{z^{m+1-2k}} + z^{m+1-2k}] \end{split}$$

Since $|m+1-2k| \leq m$, by assumption, we have a unique polynomial Q_k such that $1/z^{m+1-2k} + z^{m+1-2k} = Q_k(z+1/z)$. Let $P_{m+1}(x) = x^{m+1} - \sum_{m=1}^{k} C_{m+1}^k Q_k(x)$. Then this is the desired polynomial for n=m+1. Uniqueness is shown in the proof as each Q_k is unique.

2.1 (3 points) Proof:

$$(1-z)P(z) = (a_0 + a_1z + \dots + a_nz^n) - (a_0z + a_1z^2 + \dots + a_nz^{n+1})$$

= $a_0 + (a_1 - a_0)z + \dots + (a_n - a_{n-1})z^n - a_nz^{n+1}$

So

$$|(1-z)P(z)| > a_0 - [(a_0 - a_1)|z| + \dots + (a_{n-1} - a_n)|z|^n - a_n z^{n+1}]$$

unless z = 0. If $|z| \le 1$, then RHS $\ge a_0 - [(a_0 - a_1) + \cdots + a_n] = 0$. So in this case, we have |P(z)| > 0, which means P(z) can't have roots in the closed unit disc centered at origin.

5.3 (7 points)

- (a) Proof: Let $P(z) = \sum_{k=0}^{n} a_k z^k$ with $n \ge 1$, $a_n \ne 0$. Then $\lim_{|z| \to \infty} |P(z)| = \infty$. So outside some disc $\{z : |z| \le R\}$, $|P(z)| > |a_0| = |P(0)|$. Therefore if the minimum of |P(z)| for $|z| \le R$ occurs at z_0 , then $z = z_0$ gives the minimum of |P(z)| with respect to the whole plane.
- (b) Proof: It's clear that Q(z) is a polynomial. Since Q(0) = 1, we can see Q(z) has the form of $1 + cz^m + \ldots$, with $m \ge 1$ and \ldots are terms of higher degree.
- (c) Proof: If α is a root of $c\alpha^m = -1$, then $Q(\alpha z) = 1 + (\alpha z)^m c + \cdots = 1 z^m + \ldots$ By definition of z_0 , $|Q(z)| \ge 1$. So, $|Q(\alpha z)|$ obtains its minimum modulus with respect to the plane at z = 0.
- (d) Proof: let z > 0. Then as z small enough, $|Q(\alpha z)|$ is close to $1 z^m/2$, which is smaller than 1 for z sufficiently small. Contradiction. \square .