MATH 418 Function Theory Homework 3 Solution

Due Febuarary 13, 2003

Section 2.1

2. (4 points) Solution: (a) Neither. (b) The second one. \Box

10. (4 points) Proof: Plug the expression of $\Delta \zeta$ into the first equation, we get

$$\Delta \omega = f'(\zeta)(g'(z)\Delta z + \varepsilon_2 |\Delta z|) + \varepsilon_1 |(g'(z)\Delta z + \varepsilon_2 |\Delta z|)|$$

Since as $\Delta z \to 0$, $\Delta \zeta \to 0$, we conclude $\Delta z \to 0$ implies $\varepsilon_1 \to 0$ and $\varepsilon_2 \to 0$. Hence

$$\Delta \omega = f'(g(z))g'(z)\Delta z + o(|\Delta z|)$$

Let $\Delta z \to 0$, we are done.

Section 2.2

7. (6 points) Proof:

$$\begin{aligned}
\cos(z_1 + z_2) + i\sin(z_1 + z_2) \\
&= e^{z_1 + z_2} \\
&= e^{z_1} e^{z_2} \\
&= (\cos z_1 + i\sin z_1)(\cos z_2 + i\sin z_2) \\
&= (\cos z_1 \cos z_2 - \sin z_1 \sin z_2) + i(\cos z_1 \sin z_2 + \sin z_1 \cos z_2) \quad (1)
\end{aligned}$$

Replace z_1 , z_2 with $-z_1$, $-z_2$ in the above equation, we get

$$\cos(z_1 + z_2) - i\sin(z_1 + z_2) = (\cos z_1 \cos z_2 - \sin z_1 \sin z_2) - i(\cos z_1 \sin z_2 + \sin z_1 \cos z_2)$$
(2)

Divide (1)-(2) by 2i, we get

$$\sin(z_1 + z_2) = \frac{2i(\sin z_1 \cos z_2 + \cos z_1 \sin z_2)}{2i} = \sin z_1 \cos z_2 + \cos z_1 \sin z_2$$

Divide (1)+(2) by 2, we get

$$\cos(z_1 + z_2) = \frac{2(\cos z_1 \cos z_2 - \sin z_1 \sin z_2)}{2} = \cos z_1 \cos z_2 - \sin z_1 \sin z_2$$

13. (3 points) Proof:

$$2\sqrt{2}e^{\pi i/12}$$

$$= 2\sqrt{2}e^{\pi i/3}e^{-\pi i/4}$$

$$= 2\sqrt{2}(1/2 + \sqrt{3}/2i)(\sqrt{2}/2 - \sqrt{2}/2i)$$

$$= (1 + \sqrt{3}i)(1 - i)$$

$$= (1 + \sqrt{3}) + (\sqrt{3} - 1)i$$

15. (4 points) Proof: $\omega = e^{(1+i)t} = e^t e^{it}$. So, when t goes from $-\infty$ to ∞ , $\operatorname{Im}\omega = e^{it}$ repeats the value on the unit circle centered at origin, and $\operatorname{Re}\omega = e^t$ gets larger and larger. So the graph of ω is a logarithmic spiral.

Section 2.3

2. (3 points) Proof: Since $e^{\log 1+i\pi/2} = e^{\pi i/2} = i$ and $0 \le \pi/2 < 2\pi$, we get by definition $\operatorname{Log}_i = \pi i/2$. Hence

$$i^{i} = e^{i \log i} = e^{i(\text{Log}i + 2\pi ik)} = e^{i(i\pi/2 + i2\pi k)} = e^{-(4k+1)\pi/2}$$

where $k \in \mathbb{Z}$.

7. (12 points) Solution:

(i) $\omega = \cos^{-1} z$ implies $\cos \omega = z$, i.e. $(e^{i\omega} + e^{-i\omega})/2 = z$. Hence $e^{2i\omega} - 2ze^{i\omega} + 1 = 0$. Solve this equation, we get

$$e^{i\omega} = \frac{2z + \sqrt{4z^2 - 4}}{2} = z + \sqrt{z^2 - 1}$$

Note here square roots are allowed to take two values, so it suffices to take only one of the roots of the quadratic equation. Since $[z - (z^2 - 1)^{1/2}][z + (z^2 - 1)^{1/2}] = 1$, we conclude $z + (z^2 - 1)^{1/2} \neq 0$. So $\log[z + (z^2 - 1)^{1/2}]$ is well defined and $w = -i \log[z + (z^2 - 1)^{1/2}]$.

(ii) $\omega = \tan^{-1} z$ implies

$$z = \tan \omega = -i \frac{e^{i\omega} - e^{-i\omega}}{e^{i\omega} + e^{-i\omega}}$$

So we get

$$e^{2i\omega} = \frac{i-z}{i+z}$$

Take logarithm, we get

$$\omega = \frac{i}{2}\log\frac{i+z}{i-z}$$

(iii) $\omega = \cosh^{-1} z$ implies

$$z = \frac{e^{i(i\omega)} + e^{-i(i\omega)}}{2} = \frac{e^{\omega} + e^{-\omega}}{2}$$

So $e^{2\omega} - 2ze^{\omega} + 1 = 0$. Solve this equation and take only one of the roots since square roots are allowed to take two values

$$e^{\omega} = z + \sqrt{z^2 - 1}$$

So we get $\omega = \log[z + (z^2 - 1)^{1/2}]$. \Box (iv) $\omega = \tanh^{-1} z$ implies $z = \frac{e^{\omega} - e^{-\omega}}{e^{\omega} + e^{-\omega}}$. So $z(e^{2\omega} + 1) = e^{2\omega} - 1$. Simplify this equation, we get $e^{2\omega} = \frac{1+z}{1-z}$. Hence $\omega = \frac{1}{2}\log\frac{1+z}{1-z}$. \Box

8. (4 points) Proof: Since $tan^{-1}z = \frac{i}{2}\log \frac{i+z}{i-z}$,

$$\frac{d}{dz}\tan^{-1}z = \frac{i}{2}\frac{i-z}{i+z}\frac{i-z+(i+z)}{(i-z)^2} = \frac{1}{z^2+1}$$

Since $\sinh^{-1} z = \log[z + (z^2 + 1)^{1/2}]$, we get

$$\frac{d}{dz}\sin h^{-1}Z = \frac{1+\frac{1}{2}(z^2+1)^{-1/2}2z}{z+(z^2+1)^{1/2}} = \frac{1+\frac{z}{\sqrt{z^2+1}}}{z+\sqrt{z^2+1}} = \frac{1}{\sqrt{z^2+1}}$$

Chapter 2 Additional Problems

1.3 (4 points) Proof: We note the following relations

$$\sum_{i=1}^{n} \alpha_i = \frac{\text{the coefficient of } z^{n-1} \text{ in } \mathbf{P}(\mathbf{z})}{-1 \times \text{the coefficient of } z^n \text{ in } \mathbf{P}(\mathbf{z})}$$

and

$$\sum_{j=1}^{n-1} \beta_i = \frac{\text{the coefficient of } z^{n-2} \text{ in } P'(z)}{-1 \times \text{the coefficient of } z^{n-1} \text{ in } P'(z)}$$

Since the coefficient of z^{n-2} in $P'(z) = (n-1) \times$ the coefficient of z^{n-1} in P(z), and the coefficient of z^{n-1} in $P'(z) = n \times$ the coefficient of z^n in P(z), we can conclude the desired equation.

1.4 (6 points)

(a) Solution: $\operatorname{Re}(\alpha z + \beta)$ has the form of ax + by + c where x and y are the real and imaginary parts of z, respectively. So $\operatorname{Re}(\alpha z + \beta) < 0$ if and only if ax + by + c < 0 and therefore stands for a half plane.

(b) Proof: z is a root of Q(z) if and only if \tilde{z} is a root of $P(\tilde{z})$. So the zeros of Q lie in the half plane $\operatorname{Re}(\alpha z + \beta) < 0$ if and only if the zeros of P have negative real parts. By Example 1.3, all the zeros of $P'(\tilde{z})$ also have negative real parts. But $P'(\tilde{z}) = Q'(z) \frac{dz}{d\tilde{z}}$. So \tilde{z} is a root of $P'(\tilde{z})$ if and only if z is a root of Q'(z). So by the correspondence between z and \tilde{z} , all the zeros of Q'(z) lie in the half place $\operatorname{Re}\tilde{z} < 0$.

(c) Proof: Clear from (b).