MATH 418 Function Theory

Homework 1 Solution

Due February 20

Section 2.4

1. (8 points) Solution:
(1) w = z: The fundamental region is C.
(2) w = 2% The fundamental region is {z : 0 < Argz < 7}.
(3) w= zl/ 4: Riemann surface has four sheets and has a structure similar to
that of 2/3 in Example 4.1.
(4) w = 2%?2: Fundamental region is {z : 0 < Argz < 27/3}. Riemann surface
for 23 has a structure similar to that of z'/? in Example 4.1, but only two
sheets.
B)w=2w=e , so Riemann surface is similar to that of log z but has
infinitely many sheets, never closing to itself. Fundamental region is {z : 0 <
Argz < 2m/e}.
(6) w = log(1 — z): Riemann surface is similar to that of log z, but centered

elog z

at (1,0).
(7) w? = log z: It’s the composition of the Riemann surface of a logarithm
and that of a square root function. O

3. (4 points) Solution:
(1) 2*P requires log 1 = 0.
(2) log z* = alog z requires log 1 = 0.
(3) By Example 3.1, this is always true and we don’t need log1 = 0.
(4) log(z%)? = ﬁlog( “) = Balog z requires log 1 = 0.

[
4. (3 points) Proof: ¢'(z) = a/(az) — 1/z = 0. So ¢ is constant. Let
¢ = zo, then z5 = ¢(1) = loga. This shows log(az) = loga + log z. O
Section 2.5
L. (4 pomts) Solution:
(1) A(z? y +1)=1—-1=0. Harmonic.
(2) A = (2% — y?) = 62 — 6y # 0. Not harmonice.
(3) A(Sxy — y + xy) = 6y — 6y = 0. Harmonic.
(4) A(x® —62%y* +yt + 23y —xy?) = 1222 — 129y% + 62y — 1222 + 12y — 62y = 0.
Harmonic. [l



8. (5 points) Proof: Suppose f = fi +ifs and g = g1 + igs, then

Ifi+tg) 0fi Og  0f  0g2  O(f2+ g2)

ox T 9r | Or é?_y dy dy
Similarly we can show a(fggjgl) = —8(%1_92). So f + g satisfies the Cauchy-

Riemann equations.

By similar argument, we can show fg also satisfies the Cauchy-Riemann
equations.

a + bi and x + yi obviously satisfy Cauchy-Riemann equations at every
point since a, b are constant functions and dx/dx =1 = dy/dy, 0x /0y =0 =

—0y/ 0.
Hence we can deduce the polynomials P(z) satisfies the Cauchy-Riemann
equations. O

9. (4 points) Proof: By definition, Imz=2 = —2xy/(z* + y?). Therefore

[ Jor(ey) £ (0,0
gb(l’,y) o { ()7Jr fO?”(ﬂ?,y) = (070)

When (z,y) — (0,0), ¢(x,y) doesn’t have limit, as can be seen by letting
y = kz, for varying k.

To check ¢ satisfies Laplace’s equation, note ¢ is symmetric in  and v,
except a sign. So 8?¢/02% = —0%/0y*¢, i.e. Ag = 0. O

Section 2.6

1. (7 points) Solution:

1 :1,’V|:17¢:$7¢:y

HV-1,

(2) V= —i, |V|:1a ¢:—y7¢:$

() V==1/2 [V|=1/]2], ¢ = 2/(a* + y*), ¥ = —y/(a* + 1)

() V = i/2, V] = /|42, 6 = /(2 1 42), & = /(a1 ).

(6) V =2z, V| =2|2], ¢ = 2® — ¢*, ¢ = 2ay.

() V ==2iz, |V| =2|z|, ¢ = —2zy, = 2* — y* O
4. (4 points) Proof:

az are?  ae?

Wl | Q1

V = f! _= —_— = =
) 2|2 72 T

So arg% = arg% (constant). Also, if we let a = a + bi, then f(2) = (a +
bi)(logr +10) = alogr — b + (blogr + af)i. Then streamlines are defined by
blogr + af = ¢, i.e. r = el /% So they're logarithmical spirals. O



6. (6 points) Proof: f(z) = log(z — 1) — log(z + 1). Then the potential
corresponding to f(z) can be seen as a superposition of a source at 1 and a

sink at -1.
1 1 2

V = _/ pu— _ =
F'z) z—1 z+1 22-1
So |V|=2/z2 — 1], i.e. |V||Z2 - 1] = 2.
The streamlines have equations of the form Arg ;—r} = (. This shows vector

AP and PB have constant angles in between, where A = (—1,0), P = z and
B = (1,0). These are circles. O

Chapter 2 Additional Problems

1.5 (5 points) Proof:

If y = kx with k£ # 0, then

%y ka? kx
= —_— O

Ry

as x — 0. If z = ky, then

ZL’Qy k2y3 k2y

6 1.2 16,6 1,2 16,4 —0
% 4y kCy® 4y kSyt + 1

as y — 0. Hence the limit defining f’(0) exists, as z — 0 along any straight
line passing through the origin. However, f is not continuous at z = 0. To
see this, let y = kx?, then f(z) — k/(1 + k*) as z — 0. This is dependent on
the choice of k. So the limit is indefinite. ]



