MATH 418 Function Theory Homework 1 Solution

Due February 20

Section 2.4

1. (8 points) Solution:

(1) $\omega = z$: The fundamental region is \mathbb{C} .

(2) $\omega = z^2$: The fundamental region is $\{z : 0 \leq Argz < \pi\}.$

(3) $\omega = z^{1/4}$: Riemann surface has four sheets and has a structure similar to that of $z^{1/3}$ in Example 4.1.

(4) $\omega = z^{3/2}$: Fundamental region is $\{z : 0 \leq Argz < 2\pi/3\}$. Riemann surface for z^3 has a structure similar to that of $z^{1/3}$ in Example 4.1, but only two sheets.

(5) $\omega = z^e$: $\omega = e^{e \log z}$, so Riemann surface is similar to that of log z but has infinitely many sheets, never closing to itself. Fundamental region is $\{z: 0 \leq \}$ $Argz < 2\pi/e$.

(6) $\omega = \log(1-z)$: Riemann surface is similar to that of $\log z$, but centered at $(1, 0)$.

(7) $\omega^2 = \log z$: It's the composition of the Riemann surface of a logarithm and that of a square root function. \Box

3. (4 points) Solution:

(1) $z^{\alpha+\beta}$ requires $\log 1 = 0$.

(2) $\log z^{\alpha} = \alpha \log z$ requires $\log 1 = 0$.

(3) By Example 3.1, this is always true and we don't need $log 1 = 0$.

(4) $\log(z^{\alpha})^{\beta} = \beta \log(z^{\alpha}) = \beta \alpha \log z$ requires $\log 1 = 0$.

 \Box

4. (3 points) Proof: $\phi'(z) = a/(az) - 1/z = 0$. So ϕ is constant. Let $\phi = z_0$, then $z_0 = \phi(1) = \log a$. This shows $\log(az) = \log a + \log z$. \Box

Section 2.5

1. (4 points) Solution: (1) $\Delta(x^2 - y^2 + 1) = 1 - 1 = 0$. Harmonic. $(2) \Delta = (x^3 - y^3) = 6x - 6y \neq 0$. Not harmonice. (3) $\Delta(3x^y - y^3 + xy) = 6y - 6y = 0$. Harmonic. (4) $\Delta(x^5 - 6x^2y^2 + y^4 + x^3y - xy^3) = 12x^2 - 12y^2 + 6xy - 12x^2 + 12y^2 - 6xy = 0.$ Harmonic. \Box 8. (5 points) Proof: Suppose $f = f_1 + if_2$ and $g = g_1 + ig_2$, then

$$
\frac{\partial (f_1 + g_1)}{\partial x} = \frac{\partial f_1}{\partial x} + \frac{\partial g_1}{\partial x} = \frac{\partial f_2}{\partial y} + \frac{\partial g_2}{\partial y} = \frac{\partial (f_2 + g_2)}{\partial y}
$$

Similarly we can show $\frac{\partial (f_1+g_1)}{\partial y} = -\frac{\partial (f_2+g_2)}{\partial x}$. So $f+g$ satisfies the Cauchy-Riemann equations.

By similar argument, we can show fg also satisfies the Cauchy-Riemann equations.

 $a + bi$ and $x + yi$ obviously satisfy Cauchy-Riemann equations at every point since a, b are constant functions and $\partial x/\partial x = 1 = \partial y/\partial y$, $\partial x/\partial y = 0$ $-\partial y/\partial x$.

Hence we can deduce the polynomials $P(z)$ satisfies the Cauchy-Riemann \Box equations.

9. (4 points) Proof: By definition, $\text{Im}z^{-2} = -2xy/(x^2 + y^2)$. Therefore

$$
\phi(x,y) = \begin{cases} \frac{-2xy}{x^2 + y^2}, & \text{for}(x,y) \neq (0,0) \\ 0, & \text{for}(x,y) = (0,0) \end{cases}
$$

When $(x, y) \rightarrow (0, 0), \phi(x, y)$ doesn't have limit, as can be seen by letting $y = kx$, for varying k.

To check ϕ satisfies Laplace's equation, note ϕ is symmetric in x and y, except a sign. So $\partial^2 \phi / \partial x^2 = -\partial^2 / \partial y^2 \phi$, i.e. $\Delta \phi = 0$. \Box

Section 2.6

1. (7 points) Solution: (1) $V = 1$, $|V| = 1$, $\phi = x$, $\psi = y$. (2) $V = -i$, $|V| = 1$, $\phi = -y$, $\psi = x$. (3) $V = 1 - i$, $|V| = \sqrt{2}$, $\phi = x - y$, $\psi = x + y$. (4) $V = -1/\bar{z}^2$, $|V| = 1/|z|^2$, $\phi = x/(x^2 + y^2)$, $\psi = -y/(x^2 + y^2)$. (5) $V = i/\bar{z}^2$, $|V| = 1/|z|^2$, $\phi = y/(x^2 + y^2)$, $\psi = x/(x^2 + y^2)$. (6) $V = 2\overline{z}$, $|V| = 2|z|$, $\phi = x^2 - y^2$, $\psi = 2xy$. (7) $V = -2i\bar{z}$, $|V| = 2|z|$, $\phi = -2xy$, $\psi = x^2 - y^2$. \Box

4. (4 points) Proof:

$$
V = \bar{f}'(z) = \frac{\bar{\alpha}}{\bar{z}} = \frac{\bar{\alpha}z}{|z|^2} = \frac{\bar{\alpha}re^{i\theta}}{r^2} = \frac{\bar{\alpha}e^{i\theta}}{r}
$$

So $arg\frac{V}{z} = arg\frac{\bar{\alpha}}{r^2}$ (constant). Also, if we let $\alpha = a + bi$, then $f(z) = (a +$ bo $arg_{z} = arg_{r^2}$ (constant). Thus, if we feed $a = a + bi$, then $f(z) = (a + bi)(\log r + i\theta) = a \log r - b\theta + (b \log r + a\theta)i$. Then streamlines are defined by $b \log r + a\theta = c$, i.e. $r = e^{(c-a\theta)/b}$. So they're logarithmical spirals. \Box

6. (6 points) Proof: $f(z) = \log(z - 1) - \log(z + 1)$. Then the potential corresponding to $f(z)$ can be seen as a superposition of a source at 1 and a sink at -1.

$$
V = \bar{f}'(z) = \frac{1}{z - 1} - \frac{1}{z + 1} = \frac{2}{z^2 - 1}
$$

So $|V| = 2/|\bar{z}^2 - 1|$, i.e. $|V||\bar{z}^2 - 1| = 2$.

The streamlines have equations of the form $Arg_{z+1}^{\underline{z-1}} = C$. This shows vector AP and PB have constant angles in between, where $A = (-1,0), P = z$ and $B = (1, 0)$. These are circles. \Box

Chapter 2 Additional Problems

1.5 (5 points) Proof:

$$
\frac{f(z) - f(0)}{z - 0} = \frac{x^2 y}{x^6 + y^2}
$$

If $y = kx$ with $k \neq 0$, then

$$
\frac{x^2y}{x^6 + y^2} = \frac{kx^3}{x^6 + k^2x^2} = \frac{kx}{x^4 + k^2} \to 0
$$

as $x \to 0$. If $x = ky$, then

$$
\frac{x^2y}{x^6+y^2} = \frac{k^2y^3}{k^6y^6+y^2} = \frac{k^2y}{k^6y^4+1} \to 0
$$

as $y \to 0$. Hence the limit defining $f'(0)$ exists, as $z \to 0$ along any straight line passing through the origin. However, f is not continuous at $z = 0$. To see this, let $y = kx^3$, then $f(z) \to k/(1 + k^2)$ as $z \to 0$. This is dependent on the choice of k. So the limit is indefinite. \Box