MATH 418 Function Theory

Homework 6 Solution

Due March 6

Section 3.4

3. (4 points) Proof: Let P(z) =a(z — 21)...(2 — 2,). Then
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We conclude
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Section 3.5

1. (4 points) Proof: Let g(z) = /), then |g(z)| < e. By Liouville’s
Theorem, ¢ is constant. Hence so is f. H

2. (5 points) Proof: By formula (5.6), f™(0) = 2”—7:1 Je fc(,%, where C' =
{z:|z| = R}. So
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3. (6 points) Proof: Ya € C, choose D = {z : |z — a| < R}. Then by
Cauchy’s formula (5.6)
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where we take R sufficiently large such that |a + Re| > R — |a| is very large
and we can use the condition | f(2)] < M|z|™ for z = Re" + o (0 < 0 < 27).
Let R — oo, in the above inequality and we get f(™+Y(a) = 0. ]

9. (6 points) Proof: We prove the general case. ¥z, € C,
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for some constant L, for z sufficiently close to zy. Let 2z — 2y, we are done. [
Section 3.6

1. (4 points) Proof: To show the first case, apply Theorem 6.1 directly.
To show the second case, imitate the proof of Example 6.1. ]

3. (5 points) Proof: Just follow the hint and work by induction. O

4. (6 points) Proof: First, the functions thus defined are continuous in a
small neighbourhood D of 0, and analytic in D — {0}. Let C be any triangle
such that C' C D. Then fC f(2)dz = 0, where f stands for any of the three
functions . This is because if 0 is inside C, we then divide C into three smaller
triangles, with 0 as a vertex. f is analytic in the three smaller triangles and
hence produces 0 by integration and Cauchy’s theorem. Then use Morera’s
Theorem, and we are able to conclude f is analytic near 0.

By use power series expansion of the functions, we get
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11. (6 points) I guess the hint is detailed engouth. So I would like to skip
over the solution. (Man! The hints in this book are so detailed, it’s kind of
cheating!!.) O

12 (4 points) Proof: f and g are analytic in {|z| < R}. So fg is analytic in
{|z| < R}. Let ¢, be the coefficient of 2™ in the Taylor series of fg. Then
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And the Taylor series of fg converges uniformly to f(2)g(z) in {|z| < p <
R}. O




