MATH 418 Function Theory

Homework 7 Solution

Due March 27

Section 3.7

2. (4 points) Proof: Since f is analytic in G and f # 0in G, 1/ f is analytic
in G. By Theorem 7.5, 1/|f| cannot have a maximum value anywhere in G
unless f is a constant. So 1/|f| assumes its maximum value on 9G, i.e. |f|
assumes its minimum value on 9G. O]

5. (6 points) Proof: Let g = €. Then g is analytic in D and is not
constant. So |g| doesn’t attain maximum in D. By Problem 2, |g| doesn’t
attain minimum in D either. Since |g| = e®", this means Reh attains neither
a maximum nor a minimum in D.

Let f and g be analytic in the bounded domain D. Set h = f — g. Then
Reh = 0 on 0D. By part one, this implies h =constant. So f — g = ic, for
some constant c. 0

7. (6 points) Proof: Since f is analytic for |z| < R, and f(0) = 0, we can
write f as f(z) = zg(z), where g(z) is analytic for |z] < R. On the boundary
{lz] = R}, |9(2)| = |f(2)/z] < M/R. By maximum principle, |g(z)| < M/R
in {|z] < R}. So |f(2)] < lg9(2)||z] < |z2|M/R. < becomes < in {|z| < R},
unless g = constant. O]

Section 3.8

1. (7 points) Solution: This kind of problem can be solved quite easily
by looking at a function’s Laurent series. Unfortunately, the most useful
theorem is not in section 8, but in section 9 (Theorem 9.4, page 167). Of
course, straightforward observation is also beneficial in some cases.

(1) e*: €* is analytic everywhere in C. To judge the property of oo, we consider
all the three possibilities. First, oo cannot be removable by problem 3, since
e* is not a constant function. Second, oo is not a pole, since |e™| < 1, no
matter how large n € N is. So oo is an essential singularity.

(2) ©2: Only 0 or oo could have problems since “2* is analytic elwhere. Note
the Laurent series of 2% = %" (Zg,n , where k € NU {0}, we conclude 0 is
a pole by Theorem 9.4, since 1/z appears in the series. To to see the property
of 0o, replace z with 1/(, it’s clear that ( = 0 is an essential singularity, by

Theorem 9.4. Hence oo is an essential singularity of <2%.

1



(3) Z‘EZj): 1 is a pole and 0 is removable. Replace z with 1/¢, we get (e% —

1)1% It’s clear that this function is not differenctiable at ¢ = O(argue by
direct computation according to the definition of being analytic). So, oo
cannot be removable. Furthermore, if z — oo along the negative x-axis,

then Z?Zj) goes to 0. So, oo cannot be a pole. Hence, co has to be an

essential singularity.
2 . . . . .
4) Z=L. This function is equal to 1 — —2—. So, i and —i are two poles.
ze+1 z2+1
1-¢2

Replace z with 1/¢, we get ; el This new function is differentiable at ( = 0.
So, oo is a removable singularity of the original function.
(5) Z?izz By similar arguement, ¢ and —¢ are two poles. 0 is a removable

singularity. And oo is also a pole, since after replacing z with 1/, we get
1

2+ 4 .
EG)CeCOShZ: cosh z is an entire function, so is e*. Since the function under
consideration is the composition of two entire functions, it’s entire. To judge
00, note first by problem 3, oo cannot be removable. Let z = in where n is
just a natural number. Then we can see, as n — 400, hence z — o0, €%h*
is bounded. So, co cannot be a pole. So, co has to be an essential singularity.
(7) % We first solve the equation € = e~ and get solutions z = km
where k € Z. For k # 1,0, km becomes a pole since sinz = 0 here. For 0,
as z — 0, % —— 1, by the definition of the derivative of sin z at 0. So, 0

is a pole. For 7, note sin(z — ) = —sin z, we again return to the previous
case. But this time the dominator sin(z — 7) and the nominator (z — 7) have

)2 .
the same power. So, deom)’ L, roas 2 — Hence, 7 is a removable

(sin 2)?
singularity. Let z — oo along the positive x-axis, the function has no limit.
So, oo cannot be a pole or removable. So, it’s an essential singularity. OJ

3. (5 points) Proof: If a function is analytic in the extended plane, then
in particular, it’s analytic at co. So it must have a definite finite value at
oo and is continuous at oo. Hence, it is bounded in a neighbourhood of oo,
say, {z : |z| > M} for some positive number M. Meanwhile, this function is
bounded in the closed disc {z : |z| < M}. So, this analytic function is bounded
on the whole plane. By Liouville’s Theorem, it has to be a constant. Il

6. (6 points) Solution:
) S=>,"s (ni;%)!‘ So a, = ﬁ and the principle part is z;_5 (nif))!'
(11) sinz _ _ ZOO (=) 141 (z—27)" (_1)717‘*'1 So bn — w(_l)%ﬂ and

(z—2m)2 n=—1 2 (n+2)! 2(n+2)!
the principle part is (z — 27) L.
(i) o = __Kz(jgg]ﬁ = 30 L0z —1)" Soc, = —Cft? and
principle part is — 3.1 . CoF3 (2 — 1)". O
Section 3.9



4. (4 points) Proof: Since f(z) is analytic for |z| # 0, we apply Theorem
9.2 to the case a = 0 and get
1 w(z—1/2)/2
Jn(w) = — c 4

21 Jjy=1 Zntl

2
— 2L ew(ei‘gfe_w)/Zef(n+l)i0iei9d6
i
1 2 . )
— 2_ elwsin Ge—znGdQ
™ Jo
1 21 2
= —[/ cos(wsin — nd)dl + / i sin(wsin 6 — no)do]
2" )y 0
1

= —/ cos(wsin @ — n#)do
0

™

5. (4 points) Proof:

= [ cos(wsin @ — nf) sin™ 6df,  m = Omod4
dam () = = [, —sin(wsin @ — nf) sin™ Odf, m = lmod4
dom = [ — cos(wsin — nf) sin™ Odf, m = 2mod4
= [, sin(wsin@ — nd) sin™ 6df,  m = 3mod4
So
dm Jo(@)] %] J) cosn@sin™ 0df|, m = Omod2
dom W lw=0) = %| foﬂ sinnfsin™ 0df|, m = 1mod2

By Problem 2, we see this is 0 for 0 < m < n. So J, has a zero of order n at
w=2~0 O

Additional Problems on Chapter 3

3.3 (4 points) Proof: Assume maxj.—1 [1/2z — f(2)| < 1. Then

‘/lzl[l/z—f(z)]dz < LH 11/2 = f(2)[|dz] < 27

By Cauchy’s Theorem, f|z\:1[1/z — f(2)]dz = 2mi. Contradiction. O
4.2 (4 points) Proof:
n P(Z) n n
1 P'(2) 1 Py 1 dz
_ d = — 72 2k d = - - N
2mi Jo P(2) T om /c P(z) : ; 27 /c z—z ()
where N(z) is the winding number of z; with respect to C. O



