MATH 418 Function Theory Homework 8 Solution

Due April 3

Section 4.2

4. (4 points) Solution: (a)

$$
\int_C \frac{2dz}{z^2 + 4iz - 1} = \int_0^{2\pi} \frac{2ie^{i\theta} d\theta}{e^{2i\theta} + 4ie^{i\theta} - 1} = \int_0^{2\pi} \frac{d\theta}{2 + \sin \theta}
$$

 $z^2+4iz-1$ has two roots $-2+\sqrt{3}i$ and -2 $z^2 + 4iz - 1$ has two roots $-2 + \sqrt{3}i$ and $-2 - \sqrt{3}i$. Only $(\sqrt{3}-2)i$ is inside the unit disc. By (2.4), $Res f((\sqrt{3}-2)i) = 1/\sqrt{3}i$. So $\int_0^{2\pi} \frac{d\theta}{2+sin\theta} = 2\pi/\sqrt{3}$. □ √ $\overline{3}i$. So $\int_0^{2\pi}$ dθ $\frac{d\theta}{2+\sin\theta} = 2\pi/\sqrt{3}.$ (b)

$$
\int_0^{2\pi} \frac{d\theta}{2 + \sin \theta} = \int_0^{2\pi} \frac{d\theta}{2 + \cos(\theta - \pi/2)}
$$

=
$$
\int_0^{3\pi/2} \frac{d\alpha}{2 + \cos \alpha} + \int_{-\pi/2}^0 \frac{d\alpha}{2 + \cos(\alpha + 2\pi)}
$$

=
$$
\int_0^{2\pi} \frac{d\alpha}{2 + \cos \alpha}
$$

=
$$
2\pi/\sqrt{3}
$$

where the last step is by (2.7).

6. (4 points) Proof: Just follow the hint. First of all, LHS of the equality in the hint is $2\pi i \times Res(f; i) = 2\pi i \times 1/(2i) = \pi$. The first term of RHS tends to $\int_{\infty}^{\infty} \frac{dx}{1+x^2}$ as R goes to ∞ . To see the second term goes to 0 as R goes to ∞ , we note

$$
\left| \int_{c_R} \frac{dz}{1+z^2} \right| \le \int_0^{\pi} \left| \frac{iRe^{i\theta}}{1+R^2 e^{2i\theta}} \right| d\theta \le \int_0^{\pi} \frac{R}{R^2 - 1} d\theta \le \pi \frac{R}{R^2 - 1} \longrightarrow 0
$$

as R goes to ∞ .

Section 4.3

 \Box

 \Box

1. (5 points) Remark: The solutions here are omitted since it's sort of tedious computation. And the contours can always be chosen as $\{z : z \in \mathbb{R}\}$ $\mathbb{R}, -R < z < R$ \cup { $z : z = Re^{i\theta}, 0 \le \theta \le \pi$ }. The answers for the integrals $\mathbb{R}, -R < z < R$ U { $z : z = R$
are $\pi/\sqrt{2}, 2\pi/3, \pi/3, \pi/2, \pi/2$. \Box

3. (5 points) Proof: As usual, we take the contour C as $\{z : z \in \mathbb{R}, -R <$ $z < R$ \cup { $z : z = Re^{i\theta}, 0 \le \theta \le \pi$ }, and the function $f(z) = \frac{e^{iz}}{(z^2 + a^2)}$ $\frac{e^{iz}}{(z^2+a^2)(z^2+b^2)}$. $f(z)$ has singularities $ai, -ai, bi$, and bi. Since the real parts of a and b are both positive, the singularities falling into C are ai and bi . So,

$$
\int_C f(z)dz = 2\pi i \left[\frac{e^{iz}}{(z^2 + a^2)(z + bi)} \Big|_{z=bi} + \frac{e^{iz}}{(z^2 + b^2)(z + ai)} \Big|_{z=ai} \right]
$$

$$
= \frac{\pi}{a^2 - b^2} (\frac{e^{-b}}{b} - \frac{e^{-a}}{a})
$$

We define $\{z : z \in \mathbb{R}, -R < z < R\}$ as II, and $\{z : z = Re^{i\theta}, 0 \le \theta \le \pi\}$ as I. And note

$$
\left| \int_{I} f(z)dz \right| = \left| \int_{0}^{\pi} \frac{e^{i(R\cos\theta + i\sin\theta)}}{(R^{2}e^{2\theta i} + a^{2})(R^{2}e^{2\theta i} + b^{2})}iRe^{i\theta}d\theta \right|
$$

$$
\leq \int_{0}^{\pi} \frac{Re^{-R\sin\theta}}{(R^{2} - |a|^{2})(R^{2} - |b|^{2})}d\theta \leq \pi \frac{R}{(R^{2} - |a|^{2})(R^{2} - |b|^{2})}
$$

It's clear that the last term goes to 0 as R goes to $+\infty$. So, we finally get

$$
\frac{\pi}{a^2 - b^2} \left(\frac{e^{-b}}{b} - \frac{e^{-a}}{a}\right) = \int_{-\infty}^{+\infty} \frac{e^{ix}}{(x^2 + a^2)(x^2 + b^2)} dx = \int_{-\infty}^{+\infty} \frac{\cos x}{(x^2 + a^2)(x^2 + b^2)} dx
$$

The last "=" is because $\frac{\sin x}{(x^2+a^2)(x^2+b^2)}$ is an odd function and it vanishes under the integration over the whole real line.

6. (9 points)

(a) If a and b are unequal complex numbers with positive real parts, prove

$$
\int_{-\infty}^{\infty} \frac{x \sin x dx}{(x^2 + a^2)(x^2 + b^2)} = \pi \frac{e^{-a} - e^{-b}}{b^2 - a^2}
$$

Proof: Let C_R be the semicircular contour $z = Re^{i\theta}$, $0 \le \theta \le \pi$, and $\pi =$ $C_R \cup [-R, R]$. Then $(x^2 + a^2)(x^2 + b^2) = 0$ if and only $x = ai, -ai, bi, or -bi$. Since $Rea, Reb > 0$, we have $Im(ai), Im(bi) > 0$. So only ai, bi fall inside C when R is large enough. Hence

$$
\int_C \frac{ze^{iz}dz}{(z^2+a^2)(z^2+b^2)} = 2\pi i [Resf(ai) + Resf(bi)] = \pi i \frac{e^{-a} - e^{-b}}{b^2 - a^2}
$$

Meanwhile

$$
\left| \int_{C_R} \frac{ze^{iz} dz}{(z^2 + a^2)(z^2 + b^2)} \right| \le \int_0^{\pi} \frac{R d\theta}{(R^2 - |a|^2)(R^2 - |b|^2)} \to 0
$$

as $R \to \infty$. So let $R \to \infty$, we get

$$
\int_{-\infty}^{\infty} \frac{xe^{ix}dx}{(x^2 + a^2)(x^2 + b^2)} = \pi i \frac{e^{-a} - e^{-b}}{b^2 - a^2}
$$

Equating the imaginary part, we get

$$
\int_{-\infty}^{\infty} \frac{x \sin x dx}{(x^2 + a^2)(x^2 + b^2)} = \pi \frac{e^{-a} - e^{-b}}{b^2 - a^2}
$$

all's rule find the limit of the right-hand member as $b \to a$

(b) By l'Hospital's rule, find the limit of the right-hand member as $b \to a$ in part (a). Then determine whether this limit agrees with the value of the integral for $b = a$.

Solution: By the same method as in part (a), we can find

$$
\int_{-\infty}^{\infty} \frac{x \sin x dx}{(x^2 + a^2)^2} = \frac{\pi e^{-a}}{2a}
$$

This is exactly the limit of $\frac{\pi(e^{-a}-e^{-b})}{h^2-a^2}$ $\frac{b^{2}-a-e^{-b}}{b^{2}-a^{2}}$ as $b \rightarrow a$, by l'Hospital rule.

(c) If f denotes the integrand in part (a), and I denotes the value of the integral, show that

$$
\left| \int_{-R}^{R} f(x)dx - I \right| \le \frac{\pi R}{(R^2 - |a|^2)(R^2 - |b|^2)}
$$

where $R > \max(|a|, |b|)$. Proof:

$$
\left| \int_{-R}^{R} f(x)dx - I \right| \leq \left| \int_{C} f(x)dx - I \right| + \int_{C_{R}} \left| \frac{ze^{iz}}{(z^2 + a^2)(z^2 + b^2)} \right| |dz|
$$

$$
\leq \frac{R\pi}{(R^2 - |a|^2)(R^2 - |b|^2)}
$$

Section 4.4

1. (3 points) Proof: Set $R = e^t$. Then

$$
\frac{(\log R)^m}{R} = \frac{t^m}{e^t} < \frac{(m+1)!}{t} \to 0
$$

as $t \to \infty$. So $\lim_{R \to \infty} \frac{(\log R)^m}{R} = 0$ along $R = e^t$. $\forall m \in \{0, 1, 2, 3, \dots\}$, and set $\rho = R^{-1}$, then $|\rho(\log \rho)^m| = \frac{(\log R)^m}{R}$ $\frac{(R)^m}{R}$. So $\lim_{\rho \to 0+} |\rho(\log \rho)^m| = \lim_{R \to \infty} \frac{(\log R)^m}{R} =$ 0.

Additional Problems on Chapter 4

4.1 (4 points) Proof: In $\{|z| \le r\}$, $f(z)$ can be written as $\prod_{i=1}^{n} (z - a_i)h(z)$ where h is analytic in $\{|z| \leq r\}$. This shows g is analytic in $\{|z| \leq r\}$ except for removable singularities. Since r^2/\bar{a}_i is outside $\{|z|=r\}$ $(i=1,\cdots,n)$ and $h(z) \neq 0$ in $\{|z| < r\}$, $g(z)$ does not vanish in $\{|z| < r\}$. Finally $|g(z)| = |f(z)|$ on $\{|z| = r\}$, since on $|z| = r$, $r^2 - \bar{a}_i z$ $r(t-a_i)$ $= 1$ by Chapter 1 problem 2.1, and $|a_i/r| < 1, |z/r| = 1.$

4.2 (4 points) Proof: $|g(0)| = |r^n f(0)| \prod_{i=1}^n a_i$. Meanwhile by maximum principle, $|g(0)| \leq \max_{|z|=r} |g(z)| = \max_{|z|=r} |f(z)| = M(r)$. So we get $r^{n}/|a_1 \cdots a_n| \leq M(r)/|f(0)|$. \Box

Section 4.5

1. (6 points) Solution: Let $D = \mathbb{C} \setminus [-\infty, \infty]$, then D is an analytic branch for z^{a-1} . We use the same notation as in example 5.1. Then

$$
I = \int_C \frac{z^{a-1}}{1-z} dz = -2\pi i
$$

Furthermore,

$$
I = \int_{R}^{\varepsilon} \frac{(re^{i\pi})^{a-1}}{1+r} e^{i\pi} dr + \int_{\varepsilon}^{R} \frac{(re^{-i\pi})^{a-1}}{1+r} e^{-i\pi} dr + J_{1} + J_{2}
$$

In D, $z^{a-1} = e^{(a-1)(\log|z|+i\arg z)}$ where $-\pi < \arg z < \pi$. So the first integral $= e^{i\pi}e^{(a-1)(\log r + \pi i)}/(1+r) = e^{(p-1)\log r - \pi q}e^{(q\log r + \pi p)i}/(1+r)$. We do similar thing to the second integral and get

$$
I = \int_{\varepsilon}^{R} \frac{r^{p-1} e^{iq \log r} (-e^{-\pi q + \pi p i} + e^{\pi q - \pi p i})}{1 + r} dr + J_1 + J_2
$$

On the circle of radius R and ε , respectively,

$$
\left|\frac{z^{a-1}}{1-z}\right| \le \frac{R^{p-1}e^{\pi|q|}}{R-1}, \left|\frac{z^{a-1}}{1-z}\right| \le \frac{\varepsilon^{p-1}e^{\pi|q|}}{1-\varepsilon}
$$

Hence $|J_1| \leq \frac{2\pi Re^{\pi|q|}}{R-1}, |J_2| \leq \frac{2\pi \varepsilon^p e^{\pi|\varepsilon|}}{1-\varepsilon}$ $\frac{\varepsilon^p e^{\pi |\varepsilon|}}{1-\varepsilon}$. Since $0 < p < 1$, by letting $R \to \infty$ and $\varepsilon \to 0$, we get

$$
\int_0^\infty \frac{r^{p-1}e^{iq\log r}}{1+r}(e^{\pi q - \pi pi} - e^{-\pi q + \pi pi})dr = -2\pi i
$$

By $\sin \pi (p + iq) = \sin \pi p \cosh \pi q + i \cos \pi p \sinh \pi q$,

$$
\int_0^\infty \frac{r^{p-1}}{1+r} e^{iq \log r} dr = \frac{2\pi i}{e^{-\pi q + \pi p i} - e^{\pi q - \pi p i}} = \frac{\pi}{\sin \pi (p + iq)} = \frac{\pi}{\sin \pi p \cosh \pi q + i \cos \pi p \sinh \pi q}
$$

Equating the real and imaginary parts, we get

$$
\int_0^\infty \frac{t^{p-1}}{t+1} \cos(q \log t) dt = \frac{\pi \sin \pi p \cosh \pi q}{(\sin \pi p \cosh \pi q)^2 + (\cos \pi p \sinh \pi q)^2}
$$

$$
\int_0^\infty \frac{t^{p-1}}{t+1} \sin(q \log t) dt = \frac{-\pi \cos \pi p \sinh \pi q}{(\sin \pi p \cosh \pi q)^2 + (\cos \pi p \sinh \pi q)^2}
$$

5. (6 points) Proof: Let $f(z) = \sqrt{z} \log z/(1+z)^2$. Let $D = \mathbb{C} \setminus [0, \infty]$. Then D is an analytic branch of $f(z)$. We let C be the contour enclosed by circles of radius R and radius ε . Imitating example 5.1, we cut C into two parts, one part contains -1 , and the other one doesn't. Then $\int_C f(z)dz = 2\pi i \text{Res } f(-1)$. $Res f(-1) = (z^{1/2} \log z)'|_{z=-1} = (z^{1/2}/z + z^{1/2} \log z / 2z)|_{z=-1} = \pi/2 - i.$ So

$$
\pi^{2}i + 2\pi = \int_{\varepsilon}^{R} \frac{\sqrt{x} \log x}{(1+x)^{2}} dx - \int_{\varepsilon}^{R} \frac{(xe^{2\pi i})^{1/2} \log(xe^{2\pi i})}{(1+x)^{2}} dx + J_{1} + J_{2}
$$

where J_1 and J_2 are the integration of $f(z)$ along the circle of radius R and radius ε , respectively. So

$$
\pi^{2}i + 2\pi = \int_{\varepsilon}^{R} \frac{\sqrt{x} \log x + \sqrt{x} (\log x + 2\pi i)}{(1+x)^{2}} dx + J_{1} + J_{2}
$$

On $|z| = R$, $|f(z)| \le \sqrt{R(R+2\pi)/(R-1)^2}$ and on $|z| = \varepsilon$, $|f(z)| \le$ √ ε(log ε+ $(2\pi)/(1-\varepsilon)^2$. So let $R \to \infty$ and $\varepsilon \to 0$, we get $|J_1| \to 0$ and $|J_2| \to 0$, respectively. Hence $\pi^2 i + 2\pi = 2 \int_0^\infty$ $\frac{\overline{a}}{\sqrt{x}}$ log x $\frac{\sqrt{x}\log x}{(1+x)^2}dx+2\pi i\int_0^\infty$ \sqrt{x} $\frac{\sqrt{x}}{(1+x)^2}dx$. Equating real parts and imaginary parts, we're done.