
MATH 418 Function Theory

Homework 8 Solution

Due April 3

Section 4.2

4. (4 points) Solution:
(a) ∫

C

2dz

z2 + 4iz − 1
=

∫ 2π

0

2ieiθdθ

e2iθ + 4ieiθ − 1
=

∫ 2π

0

dθ

2 + sin θ

z2 +4iz−1 has two roots −2+
√

3i and −2−
√

3i. Only (
√

3−2)i is inside the

unit disc. By (2.4), Resf ((
√

3− 2)i) = 1/
√

3i. So
∫ 2π

0
dθ

2+sin θ
= 2π/

√
3.

(b) ∫ 2π

0

dθ

2 + sin θ
=

∫ 2π

0

dθ

2 + cos(θ − π/2)

=

∫ 3π/2

0

dα

2 + cosα
+

∫ 0

−π/2

dα

2 + cos(α + 2π)

=

∫ 2π

0

dα

2 + cosα

= 2π/
√

3

where the last step is by (2.7).

6. (4 points) Proof: Just follow the hint. First of all, LHS of the equality
in the hint is 2πi×Res(f ; i) = 2πi× 1/(2i) = π. The first term of RHS tends
to
∫∞
∞

dx
1+x2 as R goes to∞. To see the second term goes to 0 as R goes to∞,

we note∣∣∣∣∫
cR

dz

1 + z2

∣∣∣∣ ≤ ∫ π

0

∣∣∣∣ iReiθ

1 +R2e2iθ

∣∣∣∣ dθ ≤ ∫ π

0

R

R2 − 1
dθ ≤ π

R

R2 − 1
−→ 0

as R goes to ∞.

Section 4.3
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1. (5 points) Remark: The solutions here are omitted since it’s sort of
tedious computation. And the contours can always be chosen as {z : z ∈
R,−R < z < R} ∪ {z : z = Reiθ, 0 ≤ θ ≤ π}. The answers for the integrals
are π/

√
2, 2π/3, π/3, π/2, π/2.

3. (5 points) Proof: As usual, we take the contour C as {z : z ∈ R,−R <

z < R} ∪ {z : z = Reiθ, 0 ≤ θ ≤ π}, and the function f(z) = eiz

(z2+a2)(z2+b2)
.

f(z) has singularities ai,−ai, bi, and bi. Since the real parts of a and b are
both positive, the singularities falling into C are ai and bi. So,∫

C

f(z)dz = 2πi

[
eiz

(z2 + a2)(z + bi)

∣∣∣∣
z=bi

+
eiz

(z2 + b2)(z + ai)

∣∣∣∣
z=ai

]
=

π

a2 − b2
(
e−b

b
− e−a

a
)

We define {z : z ∈ R,−R < z < R} as II, and {z : z = Reiθ, 0 ≤ θ ≤ π} as I.
And note ∣∣∣∣∫

I

f(z)dz

∣∣∣∣ =

∣∣∣∣∫ π

0

ei(R cos θ+i sin θ)

(R2e2θi + a2)(R2e2θi + b2)
iReiθdθ

∣∣∣∣
≤
∫ π

0

Re−R sin θ

(R2 − |a|2)(R2 − |b|2)
dθ ≤ π

R

(R2 − |a|2)(R2 − |b|2)

It’s clear that the last term goes to 0 as R goes to +∞. So, we finally get

π

a2 − b2
(
e−b

b
− e−a

a
) =

∫ +∞

−∞

eix

(x2 + a2)(x2 + b2)
dx =

∫ +∞

−∞

cosx

(x2 + a2)(x2 + b2)
dx

The last ”=” is because sinx
(x2+a2)(x2+b2)

is an odd function and it vanishes under
the integration over the whole real line.

6. (9 points)
(a) If a and b are unequal complex numbers with positive real parts, prove∫ ∞

−∞

x sinxdx

(x2 + a2)(x2 + b2)
= π

e−a − e−b

b2 − a2

Proof: Let CR be the semicircular contour z = Reiθ, 0 ≤ θ ≤ π, and π =
CR ∪ [−R,R]. Then (x2 + a2)(x2 + b2) = 0 if and only x = ai, −ai, bi, or −bi.
Since Rea, Reb > 0, we have Im(ai), Im(bi) > 0. So only ai, bi fall inside C
when R is large enough. Hence∫

C

zeizdz

(z2 + a2)(z2 + b2)
= 2πi[Resf (ai) +Resf (bi)] = πi

e−a − e−b

b2 − a2
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Meanwhile∣∣∣∣∫
CR

zeizdz

(z2 + a2)(z2 + b2)

∣∣∣∣ ≤ ∫ π

0

Rdθ

(R2 − |a|2)(R2 − |b|2)
→ 0

as R→∞. So let R→∞, we get∫ ∞
−∞

xeixdx

(x2 + a2)(x2 + b2)
= πi

e−a − e−b

b2 − a2

Equating the imaginary part, we get∫ ∞
−∞

x sinxdx

(x2 + a2)(x2 + b2)
= π

e−a − e−b

b2 − a2

(b) By l’Hospital’s rule, find the limit of the right-hand member as b→ a
in part (a). Then determine whether this limit agrees with the value of the
integral for b = a.
Solution: By the same method as in part (a), we can find∫ ∞

−∞

x sinxdx

(x2 + a2)2
=
πe−a

2a

This is exactly the limit of π(e−a−e−b)
b2−a2 as b→ a, by l’Hospital rule.

(c) If f denotes the integrand in part (a), and I denotes the value of the
integral, show that∣∣∣∣∫ R

−R
f(x)dx− I

∣∣∣∣ ≤ πR

(R2 − |a|2)(R2 − |b|2)

where R > max(|a|, |b|).
Proof:∣∣∣∣∫ R

−R
f(x)dx− I

∣∣∣∣ ≤ ∣∣∣∣∫
C

f(x)dx− I
∣∣∣∣+

∫
CR

∣∣∣∣ zeiz

(z2 + a2)(z2 + b2)

∣∣∣∣ |dz|
≤ Rπ

(R2 − |a|2)(R2 − |b|2)

Section 4.4

1. (3 points) Proof: Set R = et. Then

(logR)m

R
=
tm

et
<

(m+ 1)!

t
→ 0
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as t→∞. So limR→∞
(logR)m

R
= 0 along R = et. ∀m ∈ {0, 1, 2, 3, · · · }, and set

ρ = R−1, then |ρ(log ρ)m| = (logR)m

R
. So limρ→0+ |ρ(log ρ)m| = limR→∞

(logR)m

R
=

0.

Additional Problems on Chapter 4

4.1 (4 points) Proof: In {|z| ≤ r}, f(z) can be written as
∏n

i=1(z− ai)h(z)
where h is analytic in {|z| ≤ r}. This shows g is analytic in {|z| ≤ r} except
for removable singularities. Since r2/āi is outside {|z| = r} (i = 1, · · · , n) and
h(z) 6= 0 in {|z| < r}, g(z) does not vanish in {|z| < r}. Finally |g(z)| = |f(z)|
on {|z| = r}, since on |z| = r,

∣∣∣ r2−āizr(t−ai)

∣∣∣ = 1 by Chapter 1 problem 2.1, and

|ai/r| < 1, |z/r| = 1.

4.2 (4 points) Proof: |g(0)| = |rnf(0)/
∏n

i=1 ai|. Meanwhile by maxi-
mum principle, |g(0)| ≤ max|z|=r |g(z)| = max|z|=r |f(z)| = M(r). So we
get rn/|a1 · · · an| ≤M(r)/|f(0)|.

Section 4.5

1. (6 points) Solution: Let D = C\[−∞,∞], then D is an analytic branch
for za−1. We use the same notation as in example 5.1. Then

I =

∫
C

za−1

1− z
dz = −2πi

Furthermore,

I =

∫ ε

R

(reiπ)a−1

1 + r
eiπdr +

∫ R

ε

(re−iπ)a−1

1 + r
e−iπdr + J1 + J2

In D, za−1 = e(a−1)(log |z|+iargz) where −π < argz < π. So the first integral
= eiπe(a−1)(log r+πi)/(1 + r) = e(p−1) log r−πqe(q log r+πp)i/(1 + r). We do similar
thing to the second integral and get

I =

∫ R

ε

rp−1eiq log r(−e−πq+πpi + eπq−πpi)

1 + r
dr + J1 + J2

On the circle of radius R and ε, respectively,∣∣∣∣ za−1

1− z

∣∣∣∣ ≤ Rp−1eπ|q|

R− 1
,

∣∣∣∣ za−1

1− z

∣∣∣∣ ≤ εp−1eπ|q|

1− ε

Hence |J1| ≤ 2πReπ|q|

R−1
, |J2| ≤ 2πεpeπ|ε|

1−ε . Since 0 < p < 1, by letting R→∞ and
ε→ 0, we get ∫ ∞

0

rp−1eiq log r

1 + r
(eπq−πpi − e−πq+πpi)dr = −2πi
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By sinπ(p+ iq) = sin πp cosh πq + i cos πp sinhπq,∫ ∞
0

rp−1

1 + r
eiq log rdr =

2πi

e−πq+πpi − eπq−πpi
=

π

sinπ(p+ iq)
=

π

sinπp cosh πq + i cos πp sinhπq

Equating the real and imaginary parts, we get∫ ∞
0

tp−1

t+ 1
cos(q log t)dt =

π sin πp cosh πq

(sinπp cosh πq)2 + (cos πp sinhπq)2

∫ ∞
0

tp−1

t+ 1
sin(q log t)dt =

−π cos πp sinhπq

(sinπp cosh πq)2 + (cos πp sinhπq)2

5. (6 points) Proof: Let f(z) =
√
z log z/(1+z)2. Let D = C\[0,∞]. Then

D is an analytic branch of f(z). We let C be the contour enclosed by circles
of radius R and radius ε. Imitating example 5.1, we cut C into two parts, one
part contains −1, and the other one doesn’t. Then

∫
C
f(z)dz = 2πiResf (−1).

Resf (−1) = (z1/2 log z)′|z=−1 = (z1/2/z + z1/2 log z/2z)|z=−1 = π/2− i. So

π2i+ 2π =

∫ R

ε

√
x log x

(1 + x)2
dx−

∫ R

ε

(xe2πi)1/2 log(xe2πi)

(1 + x)2
dx+ J1 + J2

where J1 and J2 are the integration of f(z) along the circle of radius R and
radius ε, respectively. So

π2i+ 2π =

∫ R

ε

√
x log x+

√
x(log x+ 2πi)

(1 + x)2
dx+ J1 + J2

On |z| = R, |f(z)| ≤
√
R(R+ 2π)/(R−1)2 and on |z| = ε, |f(z) ≤

√
ε(log ε+

2π)/(1 − ε)2. So let R → ∞ and ε → 0, we get |J1| → 0 and |J2| → 0,

respectively. Hence π2i + 2π = 2
∫∞

0

√
x log x

(1+x)2
dx + 2πi

∫∞
0

√
x

(1+x)2
dx. Equating

real parts and imaginary parts, we’re done.
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