MATH 418 Function Theory Homework 9 Solution

Due April 10

Section 4.6

1. (4 points) Proof: Let $f = 2z^5$, g = 8z - 1 and $C = \{|z| = 2\}$. Then on C, $|f(z)| = 64 > 17 \ge |g(z)|$. By Rouché's Theorem, f(z) and f(z) + g(z)have the same number of zeros inside C. Because f has 5 roots inside C (0 with multiplicity of 5), so does $f(z) + g(z) = 2z^5 + 8z - 1$.

2. (4 points) Proof: Let f(z) = 8z - 1, $g(z) = 2z^5$ and $C = \{|z| = 1\}$. Then on C, $f(z) \ge 7 > 2 = g(z)$. So f(z) and g(z) + f(z) have the same number of zeros inside C. Hence $2z^5 + 8z - 1 = f(z) + g(z)$ has only one root in $\{|z| < 1\}$. Meanwhile the real polynomial $2x^5 + 8x - 1$ has opposite signs at x = 0 and x = 1. So it must have a positive real root in (0, 1). This shows the complex polynomial $2z^5 + 8z - 1$ has just one root in $\{|z| < 1\}$, and this root is real and positive.

6. (4 points) Proof: Let f(z) = -2z, $g(z) = e^z - 1$, and $C = \{|z| = 1\}$. Then on C, |f(z)| = 2 > e - 1, and $|g(z)| = |\int_0^z e^{\zeta} d\zeta| \le e - 1$. So f and f + g have the same number of roots in $\{|z| < 1\}$, i.e. only one root.

7. (4 points) Proof: The fundamental theorem of algebra can be stated as: any complex polynomial has at least one root. Let $f(z) = a_n z^n$, $g = a_{n-1}z^{n-1} + \cdots + a_0$ and $C = \{|z| = R\}$. For R large enough, we have $|f(z)| = |a_n|R^n > \sum_{k=0}^{n-1} |a_k|R^k \ge |g(z)|$. So f(z) and f(z)+g(z) have the same number of roots inside C. Since f has n roots inside C, so does f + g. We're therefore done.

8. (4 points) Proof: Assume there exists z_0 inside C such that $|g(z_0)| > m$. Let $f(z) = -g(z_0)$, then on C, $|f(z)| > m \ge |g(z)|$. So $-g(z_0)$ and $-g(z_0) + g(z)$ have the same number of zeros inside C, i.e. 0. Contradicting with the fact z_0 is a zero of $-g(z_0) + g(z)$ inside C.

10. (4 points) Proof: WLOG, we assume $P(z) = \prod_{i=1}^{n} (z - a_i)$ with $a_i \neq 0, i = 1, \dots, n$. Then $P'(z)/P(z) = \sum_{i=1}^{n} 1/(z - a_i)$. So $\sum_{i=1}^{n} 1/a_i = -P'(0)/P(0)$. Meanwhile $(\frac{P'(z)}{P(z)})' = \sum_{i=1}^{n} \frac{-1}{(z-a_i)^2}$. So

$$\sum_{i=1}^{n} \frac{-1}{(z-a_i)^2} = \frac{P''(z)P(z) - (P'(z))^2}{P(z)^2}$$

Let z = 0, we then get the desired equality.

Section 4.7

1. (4 points) Proof: Apply the Poisson formula to e^{-z} , we get

$$e^{-z} = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{x}{|z - i\omega|^2} e^{i\omega} d\omega = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{x}{x^2 + (y - \omega)^2} e^{i\omega} d\omega$$

Equating the real and imaginary parts, we get

$$e^{-x}\cos y = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{x}{x^2 + (y - \omega)^2} \cos \omega d\omega$$
$$e^{-x}\sin y = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{x}{x^2 + (y - \omega)^2} \sin \omega d\omega$$

	I	
	I	

4. (10 points) Solution:

(i)

$$f(t) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} e^{st} F(s) ds$$

We let r > 0, $C_R = \{ |z| = R, Rez \le c \}$, and $C = C_R \cup [c - ri, c + ri]$. Then

$$\begin{aligned} \frac{1}{2\pi i} \int_{c-ir}^{c+ir} e^{st} F(s) ds &+ \frac{1}{2\pi i} \int_{C_R} \frac{a e^{st}}{s^2 + a^2} ds \\ &= \frac{1}{2\pi i} \int_C \frac{a e^{st}}{s^2 + a^2} ds \\ &= Res(\frac{a e^{st}}{s^2 + a^2}; ai) + Res(\frac{a e^{st}}{s^2 + a^2}; -ai) \\ &= \frac{a e^{ati}}{2ai} + \frac{a e^{-ati}}{-2ai} \\ &= \sin at \end{aligned}$$

On C_R , $|ae^{st}/(s^2 + a^2)| \le \frac{|a|e^{|t|c}}{R^2 - a^2}$ since $Rez \le c$ on C_R . So $\left| \int_{C_R} \frac{ae^{st}}{s^2 + a^2} ds \right| \le \frac{|a|e^{|t|c}2\pi R}{R^2 - a^2} \to 0$ as $R \to \infty$. Hence $f(t) = \sin at$ by letting $r \to \infty$. (ii) We use the same contour as in (i)

$$\begin{aligned} \frac{1}{2\pi i} \int_{c-ir}^{c+ir} \frac{ae^{st}}{s(s^2+a^2)} ds &+ \frac{1}{2\pi i} \int_{C_R} \frac{ae^{st}}{s(s^2+a^2)} ds \\ &= \frac{1}{2\pi i} \int_C \frac{ae^{st}}{s(s^2+a^2)} ds \\ &= \frac{a}{a^2} + \frac{ae^{ati}}{ai(2ai)} + \frac{ae^{-ati}}{(-ai)(-2ai)} \\ &= \frac{1}{a} - \frac{1}{a} \cos at \end{aligned}$$

On C_R , $\left|\frac{ae^{st}}{s(s^2+a^2)}\right| \leq \frac{ae^{|t|c}}{R(R^2-a^2)}$. So by letting $R \to \infty$ first and then $r \to \infty$, we get $f(t) = (1 - \cos at)/a$.

By similar methods, we have

(iii) te^{-at} . \Box (iv) $t^7/7!$. \Box (v) $\cos at$. \Box

Section 4.8

1. (3 points) Proof: It's obvious that f(z) is analytic at $z = \infty$. By formula (8.1)

$$Res(f;\infty) = -\frac{1}{2\pi i} \int_{\{|z|=R\}} \frac{dz}{z} = -\frac{1}{2\pi i} \int_0^{2\pi} \frac{iRe^{i\theta}d\theta}{Re^{i\theta}} = -\frac{1}{2\pi} \times 2\pi = -1$$

6. (9 points) Solution:

(i) Use the contour C in Figure 8.3. And we get

$$I = \int_C \frac{z^2 dz}{(1+z^2)\sqrt{1-z^2}} = 2 \int_{-1+\eta}^{1-\eta} \frac{z^2 dz}{(1+z^2)\sqrt{1-z^2}} + J_1 + J_2$$

where J_1 and J_2 are the integrals over the small circles of radius ε and η , respectively. By Theorem 8.2

$$I = 2\pi i [Res(f;i) + Res(f;-i) + Res(f;\infty)] = \pi (2 - \sqrt{2})$$

And we have, similar to example 8.2, that as $\varepsilon \to 0$, $\eta \to 0$, J_1 , $J_2 \to 0$. So

$$\int_0^1 \frac{x^2 dx}{(1+x^2)\sqrt{1-x^2}} = \frac{1}{2} \int_{-1}^1 \frac{x^2 dx}{(1+x^2)\sqrt{1-x^2}} = \frac{\pi}{4}(2-\sqrt{2})$$

- (ii) We use the contour in Figure 8.4, and we get $35\pi/128$.
- (iii) Choose the contour in Fig. 8.3, and we get $\frac{\pi}{4}(\sqrt{2}-1)$.