MATH 418 Function Theory

Homework 9 Solution

Due April 10

Section 4.6

1. (4 points) Proof: Let f = 22°, g = 82 — 1 and C = {|z| = 2}. Then
on C, |f(2)] =64 > 17 > |g(z)|. By Rouché’s Theorem, f(z) and f(z) + g(z)
have the same number of zeros inside C. Because f has 5 roots inside C (0
with multiplicity of 5), so does f(z) + g(z) = 22° + 8z — 1. O

2. (4 points) Proof: Let f(z) = 82 — 1, g(z) = 22° and C = {|z] = 1},
Then on C, f(z) > 7 > 2 = g(2). So f(z) and g(z) + f(z) have the same
number of zeros inside C. Hence 22° + 82 — 1 = f(z) + g(z) has only one root
in {|z| < 1}. Meanwhile the real polynomial 22° + 8¢ — 1 has opposite signs
at x =0 and = 1. So it must have a positive real root in (0, 1). This shows
the complex polynomial 22° + 82 — 1 has just one root in {|z] < 1}, and this
root is real and positive. O

6. (4 points) Proof: Let f(z) = —2z, g(z) = ¢* — 1, and C = {|z| = 1}.
Then on C, |f(2)] =2>e—1,and |g(z)| = | [; e‘d(| < e—1. So fand f+g
have the same number of roots in {|z| < 1}, i.e. only one root. O

7. (4 points) Proof: The fundamental theorem of algebra can be stated
as: any complex polynomial has at least one root. Let f(z) = a,2", g =
ap_12"" '+ +ag and C = {|]z| = R}. For R large enough, we have |f(z)| =
|an|R™ > 3770 lar|R¥ > |g(2)]. So f(2) and f(z)+g(2) have the same number
of roots inside C. Since f has n roots inside C, so does f + g. We're therefore
done. O

8. (4 points) Proof: Assume there exists zy inside C such that |g(zo)| >
m. Let f(z) = —g(20), then on C, |f(2)] > m > |g(2)|. So —g(z0) and
—g(z0) + g(z) have the same number of zeros inside C, i.e. 0. Contradicting
with the fact zy is a zero of —g(29) + g(z) inside C. O

10. (4 points) Proof: WLOG, we assume P(z) = [[i_,(z — a;) with
a; # 0,4 =1,--- ,n. Then P'(2)/P(z) = >, 1/(z —a;). So > "  1/a; =
—P'(0)/P(0). Meanwhile (2&)y =S =L_ go

P(z) =1 (z—a;)?

3 -1 PP(e)P(z) — (P'(2))*
(



Let z = 0, we then get the desired equality. O]
Section 4.7

z

1. (4 points) Proof: Apply the Poisson formula to e~
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Equating the real and imaginary parts, we get

, we get
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4. (10 points) Solution:

(1)

1 c+i00
f(t) = Q—M\/c—ioo e F(s)ds
We let r > 0, Cgr = {|z| = R, Rez < ¢}, and C = Cr U [c — ri,c+ ri]. Then
1 c+ir . 1 aest
— “F(s)ds + — ——d
27 C,ire <)S+2m op 82+ a? °
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ae . ae )
= Res(———;ai) + Res(———; —ai)
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On Chg, |ae’/(s* + a?)| < ‘a|e fr—s since Rez < c on Cg. So

aet alell*2r R
/ 2 2d8‘ < | |2 ;- — 0
cp 82t a R —a




as R — oo. Hence f(t) = sinat by letting r — oo. O
(ii) We use the same contour as in (i)

1 c+ir CLBSt y 1 CLGSt p
2mi . s(s2 + a?) st 2mi op 5(8% +a?) °
st
= L R §
27i Jo s(s? + a?)
_ a aeati ae—ati
- ai(2ai) * (—ai)(—2as)
1 1
= — — —cosat
a a
On Ck, | 7% 82+a2 | < ‘}lgt‘c So by letting R — oo first and then r — oo, we
get f(t) = (1 — cos at)/a. O
By similar methods, we have
(iif) te—a. O
(iv) t7/7!. O
(v) cosat. O

Section 4.8

1. (3 points) Proof: It’s obvious that f(z) is analytic at z = co. By
formula (8.1)

1 dz 1 [* iRedp 1
Res(f:00) = — Co T o=
68(f7oo> 27TZ {|z|:R} z 27TZ 0 R@ze 27T e

6. (9 points) Solution:
(i) Use the contour C in Figure 8.3. And we get

(1+z)\/1—22 _1+7,1+22)\/1—z2 b

where J; and J, are the integrals over the small circles of radius € and 7,
respectively. By Theorem 8.2

I = 2mi[Res(f;i) + Res(f; —i) + Res(f;00)] = (2 — v2)
And we have, similar to example 8.2, that ase — 0, — 0, J;, J» — 0. So

/01( r2dx :l/_l( r2dx 25(2_\/5)

1+a2)vV1—a2 2/ (1+a2)V1—22 4

(ii) We use the contour in Figure 8.4, and we get 357/128.
(ili) Choose the contour in Fig. 8.3, and we get T(v/2 — 1).
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