
MATH 418 Function Theory

Homework 9 Solution

Due April 10

Section 4.6

1. (4 points) Proof: Let f = 2z5, g = 8z − 1 and C = {|z| = 2}. Then
on C, |f(z)| = 64 > 17 ≥ |g(z)|. By Rouché’s Theorem, f(z) and f(z) + g(z)
have the same number of zeros inside C. Because f has 5 roots inside C (0
with multiplicity of 5), so does f(z) + g(z) = 2z5 + 8z − 1.

2. (4 points) Proof: Let f(z) = 8z − 1, g(z) = 2z5 and C = {|z| = 1}.
Then on C, f(z) ≥ 7 > 2 = g(z). So f(z) and g(z) + f(z) have the same
number of zeros inside C. Hence 2z5 + 8z − 1 = f(z) + g(z) has only one root
in {|z| < 1}. Meanwhile the real polynomial 2x5 + 8x − 1 has opposite signs
at x = 0 and x = 1. So it must have a positive real root in (0, 1). This shows
the complex polynomial 2z5 + 8z − 1 has just one root in {|z| < 1}, and this
root is real and positive.

6. (4 points) Proof: Let f(z) = −2z, g(z) = ez − 1, and C = {|z| = 1}.
Then on C, |f(z)| = 2 > e− 1, and |g(z)| = |

∫ z
0
eζdζ| ≤ e− 1. So f and f + g

have the same number of roots in {|z| < 1}, i.e. only one root.

7. (4 points) Proof: The fundamental theorem of algebra can be stated
as: any complex polynomial has at least one root. Let f(z) = anz

n, g =
an−1z

n−1 + · · ·+ a0 and C = {|z| = R}. For R large enough, we have |f(z)| =
|an|Rn >

∑n−1
k=0 |ak|Rk ≥ |g(z)|. So f(z) and f(z)+g(z) have the same number

of roots inside C. Since f has n roots inside C, so does f + g. We’re therefore
done.

8. (4 points) Proof: Assume there exists z0 inside C such that |g(z0)| >
m. Let f(z) = −g(z0), then on C, |f(z)| > m ≥ |g(z)|. So −g(z0) and
−g(z0) + g(z) have the same number of zeros inside C, i.e. 0. Contradicting
with the fact z0 is a zero of −g(z0) + g(z) inside C.

10. (4 points) Proof: WLOG, we assume P (z) =
∏n

i=1(z − ai) with
ai 6= 0, i = 1, · · · , n. Then P ′(z)/P (z) =

∑n
i=1 1/(z − ai). So

∑n
i=1 1/ai =

−P ′(0)/P (0). Meanwhile (P
′(z)
P (z)

)′ =
∑n

i=1
−1

(z−ai)2
. So

n∑
i=1

−1

(z − ai)2
=
P”(z)P (z)− (P ′(z))2

P (z)2
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Let z = 0, we then get the desired equality.

Section 4.7

1. (4 points) Proof: Apply the Poisson formula to e−z, we get

e−z =
1

π

∫ ∞
−∞

x

|z − iω|2
eiωdω =

1

π

∫ ∞
−∞

x

x2 + (y − ω)2
eiωdω

Equating the real and imaginary parts, we get

e−x cos y =
1

π

∫ ∞
−∞

x

x2 + (y − ω)2
cosωdω

e−x sin y =
1

π

∫ ∞
−∞

x

x2 + (y − ω)2
sinωdω

4. (10 points) Solution:
(i)

f(t) =
1

2πi

∫ c+i∞

c−i∞
estF (s)ds

We let r > 0, CR = {|z| = R,Rez ≤ c}, and C = CR ∪ [c− ri, c+ ri]. Then

1

2πi

∫ c+ir

c−ir
estF (s)ds+

1

2πi

∫
CR

aest

s2 + a2
ds

=
1

2πi

∫
C

aest

s2 + a2
ds

= Res(
aest

s2 + a2
; ai) +Res(

aest

s2 + a2
;−ai)

=
aeati

2ai
+
ae−ati

−2ai
= sin at

On CR, |aest/(s2 + a2)| ≤ |a|e|t|c
R2−a2 since Rez ≤ c on CR. So∣∣∣∣∫

CR

aest

s2 + a2
ds

∣∣∣∣ ≤ |a|e|t|c2πRR2 − a2
→ 0
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as R→∞. Hence f(t) = sin at by letting r →∞.
(ii) We use the same contour as in (i)

1

2πi

∫ c+ir

c−ir

aest

s(s2 + a2)
ds+

1

2πi

∫
CR

aest

s(s2 + a2)
ds

=
1

2πi

∫
C

aest

s(s2 + a2)
ds

=
a

a2
+

aeati

ai(2ai)
+

ae−ati

(−ai)(−2ai)

=
1

a
− 1

a
cos at

On CR, | aest

s(s2+a2)
| ≤ ae|t|c

R(R2−a2)
. So by letting R→∞ first and then r →∞, we

get f(t) = (1− cos at)/a.
By similar methods, we have

(iii) te−at.
(iv) t7/7!.
(v) cos at.

Section 4.8

1. (3 points) Proof: It’s obvious that f(z) is analytic at z = ∞. By
formula (8.1)

Res(f ;∞) = − 1

2πi

∫
{|z|=R}

dz

z
= − 1

2πi

∫ 2π

0

iReiθdθ

Reiθ
= − 1

2π
× 2π = −1

6. (9 points) Solution:
(i) Use the contour C in Figure 8.3. And we get

I =

∫
C

z2dz

(1 + z2)
√

1− z2
= 2

∫ 1−η

−1+η

z2dz

(1 + z2)
√

1− z2
+ J1 + J2

where J1 and J2 are the integrals over the small circles of radius ε and η,
respectively. By Theorem 8.2

I = 2πi[Res(f ; i) +Res(f ;−i) +Res(f ;∞)] = π(2−
√

2)

And we have, similar to example 8.2, that as ε→ 0, η → 0, J1, J2 → 0. So∫ 1

0

x2dx

(1 + x2)
√

1− x2
=

1

2

∫ 1

−1

x2dx

(1 + x2)
√

1− x2
=
π

4
(2−

√
2)

(ii) We use the contour in Figure 8.4, and we get 35π/128.
(iii) Choose the contour in Fig. 8.3, and we get π

4
(
√

2− 1).
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