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Notes on Riemann Surfaces

Riemann surfaces are a special case of a more general mathematical object
called a manifold. Ignoring some technical complications, we define manifolds in the
following way:

A Cr n-dimensional manifold M consists of a set (again denoted by M) together
with a collection of subsets Ui such that

• The set M is the union of the Ui.

• There are 1− 1 maps φi : Ui → Rn with image a domain.

• If Ui ∩ Uj is nonempty, then φj ◦ φ−1
i : φi(Ui ∩ Uj) → φj(Ui ∩ Uj) is r -times

differentiable and its Jacobian is always nonsingular.

The collection of Ui and φi is called an atlas for M and each φi is a chart on Ui. The
φj ◦ φ−1

i are transition functions.

A Riemann surface is a two dimensional manifold for which the charts are
complex analytic functions of C. Any domain of C with the identity map is a Riemann
surface.

Example: Another example of a Riemann surface is the extended complex
plane that we can regard as a two dimensional sphere S2. We take two charts U1 = S2

- {north pole} and U2 = S2 - {south pole}. The maps φ1 and φ2 are defined so that
φ1(U1) and φ2(U2) both map onto C and the map φ2 ◦ φ−1

1 (z) = 1/z.

There are two common ways of constructing Riemann surfaces: analytic contin-
uation and as solutions of systems of equations. One approach to analytic continua-
tion is to consider Taylor series expansions of an analytic function. If f is analytic in
the disk Br(α) of radius r centered at the point α, then the Cauchy integral formula
and Taylor’s theorem imply that the Taylor series of f converges in Br(α). We can
use the Taylor series to define the function f : start with f being defined by its Taylor
series exapnsion in Br(α) with r chosen as the radius of convergence of the series.
Given a point β ∈ Br(α), we can compute the Taylor series at β and determine its
radius of convergence s. This will define the analytic function in Bs(β). Now Bs(β)
may well contain points not in Br(α), so we have extended the domain of f . Since
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both series give the same function values on Br(α) ∩ Bs(β), f is the same function
we started with.

Example: Let f(z) = 1/z in C − {0}. At the point α we have

1

z
=

1

α + (z − α)
=

1

α
(

1

1− (1− z/α)
) =

1

α

∞
∑

i=0

(1− z/α)i =
∞
∑

i=0

(−α)−i−1(z − α)i

This has radius of convergence α. We can cover C −{0} by disks of the form Bα(α).
The same analysis can be applied to g(z) = log(z) =

∫

f(z)dz by integrating the
Taylor series of f . However, we encounter the same problem that we have seen before
in defining log(z), namely that when we take values from a sequence of disks that
follows a closed path with non-zero winding number around the origin, then the value
of log(z) we obtain is different from the original value. This prompts us to construct
a Riemann surface on which the closed curve no longer returns to the same point.

The difficulties in defining single valued functions by analytic continuation and
by integration along paths are similar: in both cases the difficulties vanish in simply
connected domains. Topology can be used to transcend the problem with a con-
struction that produces the universal covering space of a manifold. If M and P are
differentiable manifolds, then a map ψ : P → M is a covering map if ψ is a local
diffeomorphism (i.e. Dψ is invertible at every point of P ) and onto. An important
example

Example: Consider M = S1 ⊂ R2 to be the unit circle and P = R1. The map
ψ : P →M defined by ψ(x) = exp(2πix) is a covering map.

Two closed curves γ0, γ1 : [0, 1]→M on the manifold M are homotopic if there
is a continuous map is simply connected if there is a continuous map Γ : [0, 1]×[0, 1]→
M such that Γ(0, t) = γ0(t),Γ(1, t) = γ1(t),Γ(s, 0) = Γ(s, 1). A connected manifold
M is simply connected if every closed curve is homotopic to a constant curve. A
covering map ψ : P → M of a connected manifold M is a universal cover if P is
simply connected.

Every connected manifold M has a universal cover P that is constructed from
curves on M . Pick a base point c ∈ M and consider curves γ0 : [0, 1] → M with
γ(0) = c. The covering space P is defined as a quotient of the space of curves of M
(beginning at c) by an equivalence relation. Given two curves γ0, γ1 : [0, 1]→M with
γ0(0) = γ1(0) = c and γ0(1) = γ1(1), we can construct a closed curve γ01 : [0, 1]→M
defined by γ01 = γ0(2t) for t ∈ [0, 1/2] and γ01 = γ1(2(1 − t)) for t ∈ [1/2, 1]. If
γ01 is homotopic to a constant closed curve, then we regard γ0 and γ1 as equivalent.
The covering map ψ : P → M is defined by ψ(γ) = γ(1), its endpoint. There is
a substantial amount of straightforward argument required to prove that P has the
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structure of a manifold and that it is simply connected. Moreover, ψ−1(c) has a
group structure defined by concatenation of loops, with the group operation defined
as concatenation of loops. Inverses are obtained by reversing the orientation along a
loop. Any two universal covers P1, P2 of M are diffeomorphic - there is a 1-1 smooth
map φ : P1 → P2 with a smooth inverse. Details of this construction are described in
topology couses.

If M is a Riemann surface, then its universal cover P is also a Riemann surface.
In terms of the construction described above, concatenation of curves can be used to
define coordinates on P in terms of coordinates on M . Analytic continuation of a
function f on M along homotopic curves always produces the same value. Therefore
analytic continuation of a function f defined on all of M produces a single valued
analytic function on P . Similarly, path integration of an analytic function defined on
M produces a single valued analytic function on P .

Example: The map exp : C → C − {0} is a universal cover of C − {0}.

A central question in complex analysis is the classification of Riemann surfaces.
Given two Riemann surfaces M1 and M2, we say they are isomorphic if there is an
analytic map f : M1 →M2 that is 1-1, onto and has non-zero derivative. This implies
that M1 and M2 are homeomorphic as topological spaces, but there are homeomorphic
Riemnann surfaces that are not isomorphic. Given a Riemann surface M , we would
like to parameterize the equivalence classes of Riemann surfaces homeomorphic to M ,
the equivalence class being isomorphism. There are two cases of particular interest
in which the answers are particularly elegant: M simply connected and M compact.
For the case of simply connected M , we have the following.

Example: The complex plane C and the unit disk D = {z| |z| < 1} are
homeomorphic, but not isomorphic. Proof: An analytic function f : C → D is a
bounded function on all of C. Liouville’s states that f is constant.

Theorem: Every simply connected Riemann surface is isomorphic to C, the
extended complex plane S2 or H = {z| |z| < 1}.

The proof of this theorem is complicated - the hardest part being the Riemann
Mapping Theorem that we shall discuss in detail over several lectures. We shall also
study geometry associated to the simply connected Riemann surfaces as well. In each
case, the surfaces have a group of analytic self-mappings that is quite large and gives
a way of relating complex analysis to classical Euclidean and non-Euclidean geometry.

A second common way of defining Riemann surfaces is as the solutions to n
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analytic equations in n + 1 complex variables. When the Jacobian of the equations
has full rank, then the implicit function theorem says that the solutions will form a
one (complex) dimensional manifold.

Example: Let P (z) be a polynomial of degree 2g + 2 with simple roots. Let
M be the set of solutions of the equation w2 = P (z). The Jacobian of this equation
is (w,P ′(z)). When w = 0 on M , P ′(z) 6= 0 since P has simple roots. Thus the
Jacobian always has rank 1. There is a natural way to extend the set of solutions
at infinity so that the extended M becomes a compact Riemann surface. We can
regard the Riemann surface as a two sheeted cover of the extended complex plane by
projecting M onto the z coordinate. There are branch points with behavior like the
Riemann surface of the function z2 at each of the roots of P . By cutting M along
disjoint curves that join pairs of the branch points, we can examine its topology. It
turns out to be homeomorphic to a sphere with g handles attached. The number
g is called the genus of this compact Riemann surface. Compact Riemann surfaces
of genus 1 are called elliptic curves and are topologically a two dimensional torus.
The universal cover of an elliptic curve is the complex plane (not the disk!) and the
fundamental domain can be chosen to be a parallelogram. Riemann surfaces of genus
g > 1 have universal cover the disk (not the plane!) and the fundamental domain can
be chosen to be a non-Euclidean polygon of 4g sides in the disk.
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