
Research Statement – Matthew C. B. Zaremsky

I study geometric group theory, which means that I use geometric and topological tools to
understand properties of infinite groups. In a typical problem, there is an infinite group acting
nicely on a geometric or topological space, and one wishes to extract information about the group
from information about the space. For example, one might want to know if the group is finitely
generated, finitely presented, or possesses even stronger finiteness properties. One main technique
I employ in my research is combinatorial Morse theory, which is a tool for turning difficult global
topological problems into easier local ones.

Aspects of my research build off of seminal work by Brown [Bro87], Quillen [Qui78], Bieri–
Neumann–Strebel [BNS87] and Bieri–Renz [BR88] on topological properties of infinite groups, and
by Bestvina and Brady [BB97] on combinatorial Morse theory. Many of my research projects have
involved using Morse theory to solve open problems that had proved too difficult for other methods;
see for example Theorems 2.1, 2.2, 3.2, 3.3 and 4.2 below.

Geometric group theory is a comparatively new, fast-moving and broad field of study, encom-
passing many diverse specialties. It is also particularly well suited to involving students in research.
In the summer of 2016 I ran an undergraduate research project with my student Eidan Maimoni,
working on constructing new examples of groups with interesting properties. Also, recent work of
mine with Stefan Witzel [WZ16b] was used by a team of undergraduates, in a summer REU at
Miami University working under Dan Farley, to produce potential counterexamples to an interesting
conjecture about Thompson’s group V [BZFGM14].

In the coming sections I focus on five particular aspects of my research. In Section 1, I define
classifying spaces of groups, and discuss my work involving configuration spaces. In Sections 2
and 3, which encompass my most major results, I discuss, respectively, finiteness properties of
groups, and topological properties at infinity. Sections 4 and 5 focus respectively on homological
stability for families of groups and groups acting on buildings. In all these projects, my work
involves using geometric and topological tools to deduce important properties of interesting groups,
and build connections among the fields of algebra, geometry and topology.

1. Classifying spaces

A connected CW-complex X is called a classifying space for a group G if the fundamental
group π1(X) is isomorphic to G, and the higher homotopy groups πk(X) are trivial for all k ≥ 2.
Classifying spaces are important for many reasons, for example the homology of a group equals the
homology of its classifying space, which is in theory easier to compute.

Braid groups are examples of groups with very nice classifying spaces. The n-strand braid group
can be defined via its standard presentation

Bn := 〈s1, . . . , sn−1 | sisi+1si = si+1sisi+1 for all i, and sisj = sjsi for |i− j| > 1〉.
Visually, an element of Bn is a picture of n strands winding around each other (Figure 1).

Figure 1. An element of the braid group B5.

Looking at horizontal cross-sections from a bird’s-eye view, such a picture describes n distinct
points moving around in the plane C. This intuition translates to a classifying space for Bn, namely,
the configuration space CBn = {{z1, . . . , zn} ⊆ C | zi 6= zj for i 6= j}, of n points in C.
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It turns out Thompson’s group F has a similar, nice classifying space CF of configurations. The
group F is the group of piecewise linear, orientation-preserving, continuous bijections f : [0, 1]→
[0, 1] of the unit interval, such that the slopes of the linear pieces are all powers of 2, and all the
points of non-differentiability lie in Z[1

2
]. There are many reasons that people are interested in

F , for instance it was the first example of a torsion-free group of type F∞ (defined below) that
contains copies of Zn for all n. The elements of F can be encoded into strand diagrams that look
similar to braid diagrams, except instead of braiding, the strands split and merge (Figure 2).
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Figure 2. An element of Thompson’s group F , as a function [0, 1] → [0, 1] with
two breakpoints in the domain and two in the range, and as a strand diagram with
two splits and two merges.

In his 2004 PhD thesis, Belk proposed a classifying space for F , namely the space CF of
configurations of any number of points in the real line R such that two points may coincide, but
no three points may be within a ball of radius 1. One can see the idea by taking horizontal
cross-sections of strand diagrams. An idea of a proof was sketched in Belk’s thesis, but turning
this into a rigorous proof seemed difficult. In joint work with Lucas Sabalka, we took a different
approach to the problem, and were able to prove:

Theorem 1.1. [SZ16] Belk’s space CF is a classifying space for F .

One key step was to make use of a certain CAT(0) cube complex on which F acts, first studied
by Stein and Farley.

It is an active project of mine [Zar16a] to produce a concrete classifying space for the braided
Thompson’s group Vbr of Brin and Dehornoy [Bri07, Deh06]. Thompson’s group V is defined
similarly to F , except the piecewise linear bijections need not be continuous, and the braided
Thompson’s group Vbr is a melding of V with the family of braid groups. (In a strand diagram for
Vbr, the strands may split, merge, and braid.) A candidate classifying space for Vbr is the space
CVbr of configurations of points in the plane C such that two points may coincide, but no three
points may be too close, and also no two points may too close except horizontally.

Question 1.2. Is CVbr is a classifying space for Vbr?

2. Finiteness properties of infinite groups

If a group G admits a classifying space whose n-skeleton is compact, we say G is of type Fn.
Every group is of type F0, a group is finitely generated if and only if it is of type F1, and is finitely
presented if and only if it is of type F2. Hence these topological finiteness properties are natural
extensions of these classical group theoretic notions. We also say type F∞ to mean Fn for all n.

In a seminal 1987 paper [Bro87], Brown established a necessary and sufficient criterion for
determining a group’s finiteness properties based on its action on a CW-complex. Ten years later,
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Bestvina and Brady [BB97] developed a combinatorial version of Morse theory that has since
proved to be an invaluable tool in applying Brown’s criterion to certain groups. A number of my
projects, which I will discuss now, have involved computing the finiteness properties of certain
groups of interest, utilizing Brown’s criterion and Bestvina–Brady Morse theory.

The Brin–Thompson groups sV (s ∈ N) were introduced by Brin in a 2004 paper [Bri04], and
were shown to be of type F∞ for small values of s in a 2013 paper of Kochloukova, Mart́ınez-Pérez
and Nucinkis [KMPN13], using the action of sV on a certain topological space, but the techniques
used there became unfeasible for large s. In joint work with Fluch, Marschler and Witzel, we used
the action of sV on a smaller, more manageable space to prove:

Theorem 2.1. [FMWZ13] The Brin–Thompson groups sV are of type F∞ for all s ∈ N.

Using Brown’s criterion and Bestvina–Brady Morse theory, applied to this manageable space,
the problem reduced to understanding the topology of a certain family of finite complexes, which
we did using powerful techniques of Quillen [Qui78].

We implemented a similar strategy for the aforementioned braided Thompson’s group Vbr, and
its relative Fbr, but the analogous complexes were not finite, and were much more difficult to
analyze. These complexes, called matching complexes of arcs on surfaces, are a melding of the
classical matching complexes on graphs and arc complexes on surfaces. Utilizing new, intricate
techniques, partially building off suggestions of Andy Putman, we (the previous authors plus Bux)
were able to pin down the topology of these complexes and ultimately proved:

Theorem 2.2. [BFM+16] The braided Thompson’s groups Vbr and Fbr are of type F∞.

This result had been conjectured by Meier over a decade prior. Our approach to proving
Theorems 2.1 and 2.2 has also inspired subsequent work of others, e.g., by Belk–Matucci, Mart́ınez-
Pérez–Matucci–Nucinkis, Nucinkis–St. John Green, and Thumann in understanding finiteness
properties of “Thompson-like” groups.

Spurred by the techniques used in [BFM+16], Witzel and I developed a framework, called cloning
systems, to produce new families of Thompson-like groups T (G∗), out of interesting families of
groups (Gn)n∈N [WZ16b]. Existing examples come from the braid groups, symmetric groups, and
others. Interesting new examples we explicitly discuss in [WZ16b] include loop braid groups, mock
symmetric groups, and upper triangular matrix groups. Without getting into any details, “cloning”
describes the interaction between the elements of the groups Gn of interest and a family of splitting
moves coming from Thompson’s groups. See Figure 3 for a flavor of “cloning” in the loop braid
groups (the context for the picture can be found in [WZ16b]).

=

Figure 3. A visualization of “cloning” in the loop braid groups.
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The finiteness properties of T (G∗) are often the limit of those for the Gn. This is unusual
behavior for a limiting process, for example the direct limit usually destroys finiteness properties.
We proved this for some examples in [WZ16b] using new techniques for proving finiteness properties,
and we hope to further develop these tools in the future.

Question 2.3. How often are the finiteness properties of T (G∗) the limit of those for the Gn?

Our cloning systems framework was also used by a team of undergraduates, in an REU at Miami
University, to produce potential counterexamples to the conjecture that V is a universal coCF
group [BZFGM14]. In the summer of 2016 I also ran an independent study with my student Eidan
Maimoni, constructing new, interesting examples of groups from cloning systems, e.g., a ribbon
braided Thompson group.

Studying these cloning system groups continues to be an exciting new avenue of research.
Besides the goals of building more examples and finding their finiteness properties, there also are
some connections to the recent developments of Church, Ellenberg and Farb on FI-modules and
representation stability [CEF15], and I would like to pin this down.

It turns out that Morse theory often does not apply when one is trying to prove a group does
not have a certain finiteness property. In a recent paper, Belk and Forrest found a group TB
of homeomorphisms of the Basilica Julia set, which they proved is finitely generated and has a
simple subgroup of finite index [BF15]. These properties make TB a very interesting addition to
the pantheon of infinite, virtually simple groups, and Belk and Forrest conjectured that TB is not
finitely presented. This being a negative property, the Morse theoretic approach was inconclusive.
However, by developing new techniques for finiteness properties using CAT(0) cube complexes,
Witzel and I confirmed this conjecture:

Theorem 2.4. [WZ16a] The Basilica Thompson group TB is not finitely presented.

In the course of our work we were led to pose the following (vague) open question:

Question 2.5. Do there exist simple Thompson-like groups that are finitely presented but not of
type F∞?

This is a tantalizing question since finding new examples of infinite simple groups is always a
desirable goal, and finiteness properties are a convenient way to tell whether an example is truly
different than previously existing examples.

There are some groups for which it is already a very difficult problem to tell whether or not
they are even finitely generated. A concrete example is SL2(Z[t, t−1]), the group of 2-by-2 matrices
with Laurent polynomial entries and determinant 1. For decades, people have tried to prove that
this is (or is not) finitely generated, but all the algebraic approaches so far have been inconclusive.
It is known, thanks to a 1997 result of Krstić and McCool [KM97], that the group is not finitely
presented. In a 2006 paper, Bux and Wortman [BW06] set up a geometric approach to the problem,
and recovered the Krstić–McCool result. It would be very exciting to finish this problem, for
example by developing a variation of Morse theory.

Question 2.6. Is SL2(Z[t, t−1]) finitely generated?

3. Topological properties at infinity

Knowing the finiteness properties of a group gives us an idea of how nice of a classifying space
the group could have. Once a nice, concrete classifying space X is in hand, new questions arise.

For example, one can ask about the topological properties at infinity of the universal cover X̃.
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These reveal many important features of the group and its subgroups. “Topological properties at
infinity” is a vague term, with more than one meaning. I will focus on two aspects of topology at
infinity, with respect to my research.

The first topological property “at infinity” is the notion of homotopy groups at infinity for a
space Y . These arise by taking a limit, over all compact subspaces K ⊂ Y , of the usual homotopy
groups πk of the complement Y \K. Hence, the homotopy groups at infinity only detect topological
behavior in the space that persists outside of any compact subspace. If the universal cover of a
classifying space for a group G has trivial homotopy groups at infinity, we say G itself has vanishing
homotopy groups at infinity.

My research involving homotopy groups at infinity is as follows. In the 1970’s, Geoghegan made
four conjectures about Thompson’s group F : (1) It is non-amenable, (2) It has no non-abelian free
subgroups, (3) It is of type F∞, and (4) It has vanishing homotopy groups at infinity. Properties
(2), (3) and (4) were proved for F by Brown–Geoghegan [BG84] and Brin–Squier [BS85]. Property
(1) for F remains infamously open, and has proven to be an incredibly difficult problem. Until
recently, no group was known to satisfy all four of Geoghegan’s properties. Roughly, properties (1)
and (4) say the group is “not too small” and properties (2) and (3) say it is “not too big” so to
satisfy all of them requires a delicate balancing act.

In a recent paper [LM16], Lodha and Moore introduced a remarkable group, which I call the
Lodha–Moore group LM , that was the first tractable example of a finitely presented group satisfying
properties (1) and (2) above. Lodha also proved that LM has property (3) [Lod14], bringing it
“one step away” from being the first example of a group with all four of Geoghegan’s properties.
The only open question was property (4), which I was able to resolve in [Zar16b].

Theorem 3.1. [Zar16b] The homotopy groups at infinity for LM vanish, i.e., LM satisfies property
(4), and hence LM is the first known example of a group satisfying all four of Geoghegan’s properties.

The Lodha–Moore group was already very interesting as the first straightforward example of
a finitely presented group with properties (1) and (2), and it is still more fascinating as the first
known example of a group with all four of these properties.

Another notion of topological properties “at infinity” comes from the Bieri–Neumann–Strebel–
Renz invariants of a group. Let G be a group of type Fn and let X be the compact n-skeleton
of some classifying space for G. Any non-trivial character of G, i.e., a homomorphism χ from

G to R, induces a measurement hχ : X̃ → R on the universal cover X̃. This in turn specifies a

direction toward infinity in the space, namely, if we travel through X̃ and hχ gets larger and larger,
we are going “toward infinity” relative χ. Now, if the space is essentially (n− 1)-connected in this
direction, we say χ is in the Bieri–Neumann–Strebel–Renz invariant Σn(G).

This is admittedly quite complicated, but the intuition is that the Σm(G), for m ≤ n, are a
catalog of which directions toward infinity yield vanishing homotopy groups up to dimension m− 1.
The invariant Σ1(G) was introduced by Bieri, Neumann and Strebel [BNS87] in 1987 and the
Σm(G) for m ≥ 2 by Bieri and Renz [BR88] in 1988. The BNSR-invariants are nested:

Σ1(G) ⊇ Σ2(G) ⊇ · · · ⊇ Σ∞(G),

and are all subsets of the character sphere S(G) of G. The powerful main application of the
invariants Σm(G) is that they determine the finiteness properties of every subgroup of G containing
the commutator subgroup [G,G]. For example, [G,G] itself is finitely generated if and only every
character of G lies in Σ1(G).

Because they reveal so much information, it is extremely useful to know the BNSR-invariants of
a group. However, in general they are exceedingly difficult to compute. Until recently, the only
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robust family of groups for which the problem is relevant, difficult and totally solved is right-angled
Artin groups. This was proved independently by Meier–Meinert–VanWyk and Bux-Gonzalez in the
late 1990’s. Here a right-angled Artin group is a group admitting a finite presentation in which the
defining relations say that certain pairs of generators commute, for example free groups Fn and
free abelian groups Zn are right-angled Artin groups.

I recently added to the list of groups with known BNSR-invariants. Thompson’s group F fits
into a family of groups Fn,∞, of which F is F2,∞. One can define Fn,∞ by mimicking the definition
of F in Section 1, as bijections of [0, 1], but with n in place of 2 everywhere. In a 2010 paper, Bieri,
Geoghegan and Kochloukova [BGK10] were able to compute all the BNSR-invariants Σm(F ) of
F . This led to the natural problem of computing Σm(Fn,∞) for all m and n. For n > 2 however,
the techniques in [BGK10] could not yield a full computation. Kochloukova [Koc12] was able to
compute Σ2(Fn,∞) for all n, using a different approach, but this still could not handle the case
when m and n are both larger than 2. Using intricate Morse theoretic tools, employed on certain
CAT(0) cube complexes (developed by Stein and Farley), I was able to prove:

Theorem 3.2. [Zar16c] For all n,m ≥ 2 we have Σm(Fn,∞) = Σ2(Fn,∞).

Since Kochloukova computed Σ2(Fn,∞), this finishes the problem. My approach was inspired by
joint work with Witzel [WZ15b], where we redid Bieri, Geoghegan and Kochloukova’s computation
of Σm(F ) using Morse theory and the Stein–Farley CAT(0) cube complexes.

One reason this problem was so difficult is that the BNSR-invariants of Fn,∞ lie in an (n− 1)-
sphere, so for large n the sphere becomes so high-dimensional that BNSR-invariants encode a
massive amount of information. A similar problem occurs for the BNSR-invariants of the pure
braid groups Pn. These are the subgroups Pn ≤ Bn consisting of braids in which each strand
ends up in the same position at the bottom it was in at the top. While the BNSR-invariants
of Bn lie in a 0-sphere for all n, and are easy to compute (they all equal the whole 0-sphere),
the BNSR-invariants of Pn lie in an (

(
n
2

)
− 1)-sphere. This dimension grows even faster than the

(n− 1)-spheres for the Fn,∞, and the problem is correspondingly even harder. It is not solved yet,
but Koban, McCammond and Meier computed Σ1(Pn) for all n [KMM15], and I proved:

Theorem 3.3. [Zar16d] For all 3 ≤ m ≤ n the inclusion Σm−2(Pn) ⊆ Σm−3(Pn) is proper, and
for all n < m it is an equality.

A pleasant consequence that arose in [Zar16d] is the following: consider the subgroup H of pure
braids in which the total number of times the first and second strands wind around each other
equals the total number of times the third and fourth strands wind around each other. Then H is
finitely generated (type F1) but not finitely presented (not type F2). I found similar subgroups of
type Fm−3 but not Fm−2, for all 3 ≤ m ≤ n. It is a testament to the power of all these topological
techniques that we can say H is finitely generated and not finitely presented, without ever writing
down a presentation, or even a generating set. In the future I hope to get a complete computation
of all the Σm(Pn).

Another family of groups for while I have some results on their BNSR-invariants is the aforemen-
tioned (pure) loop braid groups, also called groups of (pure) symmetric free group automorphisms.
A free group automorphism is called symmetric if it sends each basis element to a conjugate of
a basis element, and pure symmetric if it sends each basis element to a conjugate of itself. The
groups ΣAutn and PΣAutn of such automorphisms appear in many disparate contexts and have
interesting, important properties. The BNS-invariant Σ1(PΣAutn) was found by Orlandi-Korner
in 2000 [OK00], and I obtained some partial results in [Zar16e] for Σm(PΣAutn) (m ≥ 2). The
results for PΣAutn actually allowed me to fully compute the BNSR-invariants of ΣAutn:
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Theorem 3.4. [Zar16e] For n ≥ 2, we have Σn−2(ΣAutn) = S(ΣAutn) = S0 and Σn−1(ΣAutn) = ∅.
In particular the commutator subgroup ΣAut′n is of type Fn−2 but not Fn−1.

For example ΣAut′n is finitely generated if and only if n ≥ 3, and finitely presentable if and only
if n ≥ 4, which was already a new result. This also provides the first natural examples for m ≥ 2
of groups G of type F∞ such that Σm−1(G) = S(G) but Σm(G) = ∅, and of groups of type F∞
whose commutator subgroups have arbitrary finiteness properties.

4. Homological stability

As mentioned in Section 1, one of the reasons classifying spaces are so important is that they
reveal the homology of a group. It is often difficult to compute a group’s homology, or even to
deduce basic properties of it, such as whether it is trivial or not. The translation to the topological
world can make difficult questions more tractable. For example, once we are in the topological
realm, tools like Morse theory become possible.

An example of this is homological stability for a family of groups. A family of groups Gn with
homomorphisms Gn → Gn+1 is called homologically stable in n provided that, for all i and all
n>>i, the map Gn → Gn+1 induces an isomorphism in the ith homology,

Hi(Gn)
∼=→ Hi(Gn+1).

Homological stability is a desirable property to have, since for each i it shrinks an infinite list of
objects to a finite list. It can be difficult to say anything about stability of group homology, but
if one has a family of classifying spaces in hand, for each Gn, then this translates to the more
concrete question of stability for the homology of topological spaces.

Homological stability is an active and fruitful area of research. Many classical families of groups
are homologically stable, for example symmetric groups, braid groups, mapping class groups, and,
the one I will focus on now, Aut(Fn).

Theorem 4.1 (Hatcher–Vogtmann). [HV98] The groups Aut(Fn) are homologically stable.

In a 1998 paper, Hatcher and Vogtmann [HV98] established homological stability for the groups
Aut(Fn) of automorphisms of the free groups Fn. The groups Aut(Fn), and the groups of outer
automorphisms Out(Fn), are fundamental objects of study in modern geometric group theory. A
milestone in the study of Aut(Fn) and Out(Fn) was the introduction, in a 1986 paper of Culler
and Vogtmann [CV86], of the so called Culler–Vogtmann Outer space and its simplicial spine.
This spine is a contractible simplicial complex on which Out(Fn) acts with finite stabilizers and
compact quotient. There is a similar space, called Auter space, for Aut(Fn). Hatcher and Vogtmann
used Auter space to deduce homological stability for Aut(Fn), by translating the problem into a
topological one.

The key result in Hatcher and Vogtmann’s paper was the Degree Theorem, which states that
certain subspaces of Auter space have vanishing homotopy groups up to some dimension. The
proof of the Degree Theorem in [HV98] was done by globally deforming homotopy spheres, and is
quite intricate, involving many steps. In joint work with McEwen [MZ14] we reproved the Degree
Theorem using Bestvina–Brady Morse theory, which reduced the global problem to a simpler local
one. Our approach is also more readily generalizable to other contexts, for instance to questions of
stability for partially symmetric automorphism groups.

An automorphism of Fm+n is called partially symmetric if it sends the first m generators of Fm+n

to conjugates of each other, or their inverses. If it sends these generators to conjugates of themselves,
call it pure partially symmetric. Let ΣAutmn denote the subgroup of Aut(Fm+n) consisting of partially
symmetric automorphisms, and PΣAutmn the pure partially symmetric automorphisms. Now there
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are two parameters, m and n, in which the groups could be homologically stable. The question of
stability for ΣAutmn and/or PΣAutmn becomes even more interesting knowing that, when m = 0,
ΣAut0n = Aut(Fn) is stable in n, but when n = 0, PΣAutm0 is not stable in m.

Expounding on the Morse theoretic techniques from [MZ14], I was able to prove:

Theorem 4.2. [Zar14] The rational homology of ΣAutmn is stable in both m and n, and the rational
homology of PΣAutmn is stable in n.

In order to prove these stability results, I used a version of Auter space suited to the partially
symmetric automorphism groups. The Morse theoretic approach from [MZ14] could have additional
future applications, and in general the partially symmetric automorphism groups ΣAutmn are an
important family of groups, interpolating between the often mysterious full groups of automorphisms
(when m = 0) and the more well understood groups of symmetric automorphisms (when n = 0).

5. Groups acting on buildings

Another topic that plays a prominent role in my research is building theory. Buildings were
originally developed by Jacques Tits as a unified tool to analyze algebraic groups over arbitrary
fields, and since then many important applications for building theory have arisen.

A building is a simplicial complex, covered by subcomplexes called apartments, such that any two
simplices share a common apartment, any two apartments are isomorphic via an isomorphism fixing
their intersection, and each apartment is a Coxeter complex. Coxeter complexes are, topologically,
spaces like spheres or planes, with a geometry informed by reflections along hyperplanes. The
group generated by these reflections is the Coxeter group W of the building.

Given a group G acting on a building ∆, there are two notions of transitivity that play an
important role. If G is transitive on maximal simplices, called chambers, and for each chamber
C the stabilizer of C in G is transitive on apartments containing C, we call the action strongly
transitive. If instead it is only transitive on {D | δ(C,D) = w} for all w ∈ W , we call the action
Weyl transitive. Here δ is the Weyl distance function, which assigns an element of the Coxeter
group W to each pair of chambers in a certain way. Strong transitivity implies Weyl transitivity,
but it was not known until recently whether the converse was true. Abramenko and Brown found
examples of Weyl transitive actions on trees that are not strongly transitive [AB07], but it was
unclear whether this behavior was specific to these 1-dimensional examples. My PhD thesis work
produced examples of such actions for buildings of arbitrary dimension, and with arbitrary affine
Coxeter group W .

Theorem 5.1. [AZ11, Zar15] For any affine W , there are examples of groups acting Weyl transi-
tively on buildings with Coxeter group W , such that the action is not strongly transitive.

Any time one has a group acting on a building, the huge amount of symmetry in the building
makes this a very advantageous situation for understanding the group. An example of this is
my work, joint with Witzel, on the Burau representation of the braid group B4 [WZ15a]. The
Burau representation ρ4 : B4 → SL3(Z[t, t−1]) is a certain way of viewing 4-strand braids as 3-by-3
matrices, with Laurent polynomial entries. Whether or not ρ4 is injective has been a major open
problem for decades. The corresponding representations ρn for n > 4 are not injective, and for
n < 4 they are, so n = 4 is the only question. This question also has implications for the famous
problem of whether the Jones polynomial detects the unknot. In the 1970’s Birman reduced the
injectivity question to proving that a pair of explicitly given matrices f, k ∈ SL3(Z[t, t−1]) generate
a copy of the free group F2.
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In [WZ15a], we used the action of SL3(Z[t, t−1]) on a certain affine building, and the well known
Ping-Pong Lemma, to prove that:

Theorem 5.2. [WZ15a] For any m,n ≥ 3, we have 〈fm, kn〉 ∼= F2.

This does not immediately say anything about whether or not 〈f, k〉 ∼= F2, or whether ρ4 is
faithful, but it is possible that our techniques could be improved in the future to get the Ping-Pong
argument to work for f and k themselves.
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