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Commutative algebra is about commutative rings: Z, k[x1, . . . , xn], etc.
The philosophy of the subject is to try to think of a commutative ring as a ring of7/10

functions on some space.

1 Basics

1.1 Rings & homomorphisms

Definition. A ring R is a set with two binary operations, + and ·, such that:

(1) (R,+) is an abelian group (with identity 0);

(2) (R, ·) is a monoid (with identity (1);

(3) Addition distributes over multiplication [sic?]:

x(y + z) = x y +xz and (y + z)x = y x + zx

for all x, y, z ∈ R.

Examples. Though we won’t deal with them in this course, here are some examples of
noncommutative rings:

(1) For a field k, the ring Mnk of n ×n matrices over k; and

(2) For a field k and a group G , the group ring kG .

In this course, a ring means commutative ring unless otherwise stated.

Examples. The following are examples of rings:

(1) fields, such asQ, R, C, Fp =Z/p for p a prime;

(2) the ring Z of integers;

(3) the ring k[x1, x2, . . . , xn] of polynomials with coefficients in a field k;

(4) for a topological space X the ring C (X ) of continuous functions X →R;

(5) for a smooth manifold X the set C∞(X ) of smooth functions X → R forms a ring.

Remark. We don’t require 0 6= 1 in a ring. If 0 = 1 in a ring R, then (Exercise!) R = {0} = {1},
and we call this ring the zero ring, R = 0.

Exercise. 0 · x = 0 and (−1) · x =−x for every x ∈ R.

Definition. Let R be a ring. Say x ∈ R is a unit (or is invertible) if there is an element y in
R such that x y = 1. If so, then y is unique (Exercise!) and so write y = x−1 or y = 1

x .
An element x ∈ R is a zerodivisor if there is a nonzero element y ∈ R such that x y = 0.

An element x ∈ R is nilpotent if there is a n > 0 such that xn = 0.

Definition. A ring R is a field if 1 6= 0 in R and every nonzero element of R is invertible.
We say R is an integral domain (or just a domain) if 1 6= 0 in R and the product of any two
nonzero elements of R is nonzero. A ring R is reduced if the only nilpotent element of R is
0.
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Examples.

(1) The zero ring is reduced but is not a domain (or a field).

(2) For a positive integer n, the ring Z/n is a field iff it’s a domain, iff n is prime. Also,
Z/n is reduced iff n is a product of distinct primes. In Z/12, for instance, 6 is
nilpotent and nonzero, the elements 2 & 3 are zerodivisors but not nilpotent, and 5
is a unit.

(3) Z and k[x1, . . . , xn] are domains and not fields if n ≥ 1. (See Example(s) Sheet 1.)

Definition. A homomorphism from a ring A to a ring B is a function f : A → B that
preserves +, ·, and 1; that is,

• f (x + y) = f (x)+ f (y) for all x, y ∈ R;

• f (x y) = f (x) f (y) for all x, y ∈ R;

• f (1A) = 1B .

Can check that a homomorphism f satisfies f (0) = 0 and f (−x) =− f (x). (Exercise!)

Example. If A is a subring of B then the inclusion map A ,→ B is a ring homomorphism.
Also, if f : A → B and g : B →C are ring homomorphisms, then so is the composite g ◦ f .
Rings and homomorphisms form a category.

Definition. An ideal I in a ring R is an additive subgroup such that for any x ∈ I and y ∈ R ,
x y ∈ I .

Remark. The kernel of any ring homomorphism is an ideal.

Examples.

(1) The only ideals in a field k are 0 and k.

(2) Any ideal I ⊆ R that contains 1 must be all of R. So an ideal is not usually a subring.

(3) Z is a PID: i.e., every ideal in Z is of the form (n) = {nx : x ∈Z} for some n ∈Z.

(4) If A is a ring of functions on a space X and Y ⊆ X is a subspace, then

I = {
f ∈ A : f (y) = 0∀y ∈ Y

}
is an ideal.

10/10

Definition. For ideals I and J in a ring R we define I + J to be the ideal (Check: Exercise!)
I + J := {

x + y : x ∈ I , y ∈ J
}
.

For an ideal I in a ring R, the quotient ring R/I is the quotient abelian group with
product structure defined by f (x) f (y) := f (x y) (where f is the quotient map f : R�R/I ).

This is well defined since I is an ideal, and f : R � R/I is a ring homomorphism.
Usually we use the same name x for an element of R and its image in R/I .

Example. InQ[x] the elements x3 and 5x2 aren’t equal, but in the quotient ringQ[x]/(x2−
5), we do have x3 = 5x.
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For a ring homomorphism f : A → B the image f (A) = im f is a subring of B , and
ker f = {

a ∈ A : f (a) = 0
}

is an ideal of A. Moreover, A/ker f and im f are isomorphic as
rings: A/ker f ∼= im f .

Note: for a positive integer n, the quotient ring Z/(n) is usually called Z/n for short.

Exercise. For a nonzero ring R, the following are equivalent:

(1) R is a field;

(2) the only ideals in R are 0 and R;

(3) any ring homomorphism from R to a nonzero ring is injective.

Exercise. Show that in any ring R the set of nilpotent elements forms an ideal, called the
nilradical of R, N = rad(0) ⊆ R. Show the quotient R/N is reduced.

1.2 Modules

Definition. A module M over a ring R is an abelian group with a function R ×M → M ,
written (r,m) 7→ r m, satisfying

(1) (r + s)m = r m + sm for all r, s ∈ R, m ∈ M ;

(2) r (m1 +m2) = r m1 + r m2 for all r ∈ R, m1,m2 ∈ M ;

(3) (r s)m = r (sm) for all r, s ∈ R, m ∈ M ;

(4) 1 ·m = m for every m ∈ M .

Remark. This definition makes sense for noncommutative rings and defines a left R-
module.

Examples.

(1) For a field k, a k-module is just a k-vector space.

(2) A Z-module is just an abelian group.

(3) For a field k, a k[x]-module M is equivalent to a k-vector space with a k-linear map
x : M → M .

(4) An ideal I in a ring R determines two R-modules. First, an ideal is exactly an
R-submodule of R. But also the quotient ring R/I is an R-module.

Definition. An R-module homomorphism (or R-linear map) M1 → M2 is a homomor-
phism f : M1 → M2 of abelian groups such that f (r m1) = r f (m1) for every r ∈ R , m1 ∈ M1.

This definition makes the collection of R-modules (for a fixed R) into a category.
For R-modules M and N the set HomR (M , N ) of R-linear maps M → N is an abelian

group under pointwise addition: ( f + g )(m) = f (m)+ g (m) for m ∈ M . Since R is commu-
tative, HomR (M , N ) is an R-module:

(a · f )(m) = a · f (m) for a ∈ R, f ∈ HomR (M , N ), m ∈ M .
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Definition. An R-submodule of an R-module M is an abelian subgroup N ⊆ M such that
r ·n ∈ N for all r ∈ R, n ∈ N .

For an R-submodule N of M , the quotient R-module M/N is the quotient abelian
group with the obvious R-module structure: r ( f (m)) = f (r m), if f : M � M/N is the
quotient map.

For any homomorphism f : M → N of R-modules, the kernel is the set ker f = {
m ∈ M : f (m) = 0

}
,

the image is im f = f (M) ⊆ N , and the cokernel is the set coker( f ) = N / f (M) are R-
modules. Here f induces an isomorphism

M/ker f
∼=−→ im f .

1.3 Prime & maximal ideals

Definition. An ideal I in a ring R is:

• maximal if R/I is a field;

• prime if R/I is a domain;

• radical if R/I is reduced.

In particular maximal ⇒ prime ⇒ reduced.

Exercise. (1) An ideal I in R is maximal iff I 6= R and there is no ideal J with I ( J (R.

(2) An ideal I is prime iff I 6= R and the product x y belongs to I only if x ∈ I or y ∈ I .

(3) Write out what it means for I to be radical without mentioning R/I .

Examples.

(1) The maximal ideals in Z are (2), (3), (5), (7), . . . . The prime ideals are 0 and (2), (3),
(5), (7), . . . . Radical ideals in Z are 0 and the ideals (p1, . . . , pr ) with r ≥ 0 and the pi

distinct primes. (Note in any ring (1) = R.)

(2) Let k be a field. Then k[x] is a PID and therefore a UFD (see Lang). So every ideal
in k[x] has the form ( f ) for some f ∈ k[x]. Therefore an ideal in k[x] is either (0)
or k[x] = (1), or ( f e1

1 , . . . , f er
r ), where f1, . . . , fr ∈ k[x] are irreducible polynomials,

distinct modulo units (note k[x]∗= k∗), and e1, . . . ,er are each ≥ 1. So the nonzero
prime ideals in k[x] are ( f ) with f irreducible over k.

Example. If k is algebraically closed, the only irreducible polynomials (up to units) are
x −a for a ∈ k.

Example. Some examples of prime ideals in Z[x] are (0), (7), (x), and (7, x). Of these, only
(7, x) is maximal.

Definition. For a homomorphism f : A → B of rings and an ideal J ⊆ B , the contraction
of J in A is the preimage f −1(J ), which is an ideal of A.

For a ring homomorphism f : A → B and an ideal I ⊆ A, the extended ideal I e = I B ⊆ B
is the ideal generated by f (I ) ⊆ B .

In particular, for f the inclusion of a subring A of B , the contracted ideal of J ⊆ B is
just the intersection J ∩ A ⊆ A, and the extended ideal is I B ⊆ B .
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Lemma 1.1. For any ring homomorphism f : A → B and any prime ideal p ⊆ B , the
contraction f −1(p) ⊆ A is prime.

Proof. Notice that the contraction f −1(p) is the kernel of the composite

A
f−→ B −→ B/p.

Since p is prime in B , the quotient B/p is a domain, and the image im(A → B/p), which
is a subring of B/p, must also be a domain. Observing that im(A → B/p) ∼= A/ker(A →
B/p) = A/ f −1(p), we conclude that f −1(p) is prime in A.

Note that, unlike prime ideals, maximal ideals don’t always pull back under ring12/10
homomorphisms: under the inclusion Z ,→Q, the inverse image of the maximal ideal
0 ⊆Q is the prime ideal 0 ⊆Z, which is not maximal.

We’ll show that every nonzero ring contains a maximal ideal, hence a prime ideal. (For
the zero ring, the only ideal is not maximal.)

The proof relies on Zorn’s Lemma, which is equivalent to the Axiom of Choice.

Lemma 1.2 (Zorn’s Lemma). Let S be a poset. Suppose every chain (totally ordered
subset) of S has an upper bound in S. Then S has a maximal element.

Theorem 1.3. Every nonzero ring R contains a maximal ideal.

Proof. Let S be the poset of proper ideals of R (ordered by ⊆). We have to show that every
totally ordered subset C of ideals in R has an upper bound; i.e., that there exists a proper
ideal J ⊆ R such that I ⊆ J for every I ∈C .

If C =∅ then the ideal 0 ⊆ R suffices. If C 6=∅, then let J = ⋃
C ⊆ R. Because C is

totally ordered, J is an ideal in R. It remains to show that J 6= R. If J = R then 1 belongs to
J , but then 1 belongs to some I ∈C ; then I = R, a contradiction. So J is an upper bound
for C , and we’re done by Zorn’s Lemma.

Corollary 1.4. Every proper ideal I in a ring R is contained in some maximal ideal.

Proof. We use the theorem applied to R/I . Because I 6= R , the quotient R/I is nonzero, so
R/I has a maximal ideal m. Then the composite

R�R/I� (R/I )/m

has kernel a maximal ideal of R, since (R/I )/m is a field.

Definition. For a ring R the prime spectrum Spec(R) is the set of prime ideals in R.
We define a topology on the set Spec(R), the Zariski topology: For an ideal I ⊆ R,

define V (I ) := {
p ∈ Spec(R) : p⊇ I

}
. We define the closed subsets of Spec(R) to be the

subsets V (I ) for an ideal I ⊆ R. (A subset S ⊆ Spec(R) is open iff Spec(R)àS is closed.)

Why do we do this? Say R is the ring of functions on a set X with values in a field k
containing the constant k. Then a point p ∈ X gives a maximal ideal in R, namely the
kernel ker(R� k) of the evaluation map f 7→ f (p). For an arbitrary commutative ring R
consider the homomorphisms from R to any field. The kernel of a ring homomorphism
from R to a field is a prime ideal. Conversely, a prime ideal p is the kernel of the composite
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R� R/p ,→ Frac(R/p). (The ring Frac(R/p) is the field of fractions of the domain R/p.)
Then we have

V (I ) = {
p ∈ Spec(R) : ∀ f ∈ I , f maps to 0 in the ring R/p

}
.

If I = ( f1, . . . , fr ) ⊆ R, then we write V (I ) = { f1 = 0, . . . , fr = 0}.

Theorem 1.5. For any ring R, the set Spec(R) is a topological space.

Proof. We have to show:

(1) Both ∅ and Spec(R) are closed subsets of Spec(R);

(2) the intersection of any collection of closed subsets is closed; and

(3) the union of two closed subsets is closed.

(1) The closed set V (0) ⊆ R is exactly the set
{
p ∈ Spec(R) : p⊇ 0

}= Spec(R). So Spec(R)
is closed. Also V (R) = {

p ∈ Spec(R) : p⊇ R
}=∅, so ∅ is closed.

(2) We’re given a collection (Iα)α∈S of ideals, and we want to find a J such that V (J) =⋂
α∈S V (Iα). Let J =∑

α∈S Iα, the ideal of finite sums of elements of
⋃
α∈S Iα. Then it

is obvious that a prime ideal p⊆ R contains J iff p contains every Iα. So
⋂
α∈S V (Iα)

is closed.

(3) Given ideals I and J in R , we want to find an ideal K ⊆ R such that V (K ) =V (I )∪V (J ).
Let K = I ∩ J , which is an ideal. We need to show that the prime p contains I ∩ J = K
if and only if p⊇ I or p⊇ J . It is easy to see that if p⊇ I or p⊇ J , then I ∩ J = K ; so
suppose the prime p contains I ∩ J and suppose that p contains neither I nor J .
Then there are elements x ∈ I and y ∈ J that are not in p. We have x y ∉ p because
p is prime, but x y ∈ I ∩ J , a contradiction. Therefore we have proved the other
implication.

Examples.

• The spectrum Spec(Q) ofQ, or of any field, is just a point.

• Spec(Z) is a set {(2), (3), (5), . . . } of discrete points along with a blob 0. The points (p)
for p prime are closed in Spec(Z), but the closure of the point 0 is Spec(Z). In this
case 0 is called the generic point.

• Spec(C) is just Cwith a generic point. A subset of Spec(C[x]) is closed (?) if and only
if it is either the whole space or it is a finite subset of Cà {0} ⊆ Spec(C[x]).

Different ideals in a ring R can give the same closed set V (I ) ⊆ Spec(R). We’ll now
analyze when this occurs. The first step is the following theorem.

Theorem 1.6. For every ring R , the nilradical of R is the intersection of all prime ideals in
R.

Proof. One direction is easy: if x ∈ R is nilpotent, i.e. xn = 0 for some n ≥ 1, then x ∈ p
for every ideal p in R. Indeed, R/p is a domain, so the image of x in the quotient R/p is
nilpotent; so x = 0 in R/p, i.e., x ∈ p.
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Conversely, suppose that x ∈ R belongs to every prime ideal and that x is not nilpotent.
Let S be the set of ideals I in R such that xn ∉ I for all n > 0. First we’ll show that S has a
maximal element using Zorn’s Lemma.

Clearly S 6=∅ since the ideal 0 is an element of S. Suppose that {Iα} is a totally ordered
nonempty subset of S; we have to find an upper bound J in S for {Iα}. Let J =⋃

Iα, which
is an ideal since {Iα} is totally ordered. We have to show that J ∈ S, i.e. that xn ∉ J for all
n > 0. If xn were in J , we would have xn ∈ Iα for some α, a contradiction. So by Zorn’s
Lemma S contains a maximal element J . I claim J is prime. (Clearly x ∉ J , so that will
finish the proof.) If not, there are a ∈ R à J and b ∈ R à J such that ab ∈ J . Then the
ideals J + (a) and J + (b) do not belong to S by the maximality of J , so there exist positive
integers m and n such that xm ∈ J + (a) and xn ∈ J + (b). But then xm+n ∈ J + (ab) = J , a
contradiction. We conclude that J is prime.

The theorem about the nilradical implies the following: for an ideal I in a ring R , the14/10
set closed set V (I ) associated to I is equal to Spec(R) if and only if I ⊆ rad(0) ⊆ R.

Definition. For an ideal I in a ring R, the radical rad(I ) of I is the ideal

rad(I ) = {
x ∈ R : (∃n > 0) xn ∈ I

}
.

Clearly I ⊆ rad(I ); it’s easy to check that rad(I ) is radical and is the smallest radical
ideal that contains I . (Exercise!) Also, rad(I ) is the inverse image in R of the nilradical in
R/I .

Lemma 1.7. For any ideal I in a ring R, the radical rad(I ) of I is the intersection of all
prime ideals that contain I .

Proof. Look at the quotient ring R/I . We know that the nilradical of R/I is the intersection
of the primes in R/I . The primes in R/I are exactly those whose preimages in R are prime
and contain I .

Corollary 1.8. For any ideals I and J in a ring R, their associated closed sets are equal if
and only if their radicals are equal: V (I ) =V (J ) if and only if rad(I ) = rad(J ).

Proof. By definition, V (I ) =V (J ) if and only if the set of primes containing I is the set of
primes containing J . This is true if and only if rad(I ) = rad(J ) by the Lemma (1.7).

So we have a one-to-one correspondence between radical ideals in R and closed
subsets of Spec(R). Given a closed subset S ⊆ Spec(R), the corresponding radical ideal is⋂

S ⊆ R.

Example. For an integer n 6= 0, the closed subset V ((n)) = {n = 0} of Spec(Z) is exactly the
set of prime ideals (p) for prime numbers p dividing n. So the subset {12 = 0} ⊆ Spec(Z) is
the pair of points {(2), (3)}. This is the same as the closed subset {6 = 0} ⊆ Spec(Z), since
rad((12)) = (6).

Definition. The product I J of ideals I , J ⊆ R is the ideal containing all finite products ab
with a ∈ I and b ∈ J .

Clearly I J ⊆ I ∩ J . In some examples I J = I ∩ J , but that isn’t always true.
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Example. In the ring Z, the intersection of the ideals (2) and (3) is the same as their
product: (2)∩ (3) = (6) = (2)(3). But this isn’t always the case: for example, (2)∩ (2) = (2),
whereas (2)(2) = (4).

Exercise. Show that I J has the same radical as I ∩ J .

With this in mind, observe that V (I )∪V (J ) =V (I ∩ J ) =V (I J). (Recall we proved the
first equality in showing that the Zariski topology formed a topology.)

Since the topology on Spec(R) can’t distinguish between the intersection I ∩ J and
the product I J , we will often use the product, which is the simpler of the two. Indeed, if
I = ( f1, . . . , fa) and J = (g1, . . . , gb), then I J is generated by all products fi g j , whereas it’s
not clear how to write down generators for I ∩ J .

In particular, for an ideal I and a positive integer n, we define I n to be the product
ideal

I n = I I · · · I︸ ︷︷ ︸
n

.

By convention I 0 = R.

Theorem 1.9. Let f : A → B be a homomorphism of commutative rings. Define the
associated map g : Spec(B) → Spec(A) by g (p) = f −1(p). Then:

(1) g is continuous;

(2) for a homomorphism A → A/I for an ideal I ⊆ A, the map g is a homeomorphism
Spec(A/I ) onto the closed subset V (I ) of Spec(A).

Proof.

(1) It suffices to prove that the preimage under g of every closed set in Spec(A) is closed
in Spec(B). Let V (I ) be a closed set in Spec(A); we want to show that g−1(V (I )) =
V (J), some ideal J in B . Let J be the extended ideal J = f (I ) ·B ⊆ B . We want to
show that a prime ideal p in B contains the extended ideal f (I )B if and only if f −1(p)
contains I . But this is obvious: p⊇ f (I )B iff p⊇ f (I ) since p is an ideal, and p⊇ f (I )
iff f −1(p) ⊇ I . This completes the proof that g−1(V (I )) =V (J ).

(2) I’ll show that g : Spec(A/I ) → Spec(A) is injective. Because f is surjective, we the
equality f −1(p) = f −1(q) implies p= q. That is, the map g is injective. The proof that
g has a continuous inverse is an exercise.

Now for some language without much content:

2 Affine schemes

An affine scheme is a topological space X and a commutative ring R together with a

homeomorphism X
∼=−→ Spec(R). In this case we call R the ring O (X ) of regular functions

on the affine scheme X .

Example. For any field k the spectrum Spec(k) is just a point as a topological space, but
as a scheme this scheme determines the field k.
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Definition. For a ring R and n ≥ 0, we define affine n-space over R to be the affine scheme
Spec(R[x1, . . . , xn]). A morphism of affine schemes is a map Spec(B) → Spec(A) given by a
ring homomorphism A → B .

So a morphism X → Y of affine schemes determines a ring homomorphism O (Y ) →
O (X ). This is like the setting when f : X → Y is a continuous map of topological spaces,
and f induces a ring homomorphism C (Y ) →C (X ) (given by precomposition by f ).

3 Irreducible closed subsets of Spec(R)

Lemma 3.1. Let R be a domain. The closure in Spec(R) of the point corresponding to the
prime ideal 0 ⊆ R is all of Spec(R). We call that point the generic point of Spec(R).

Proof. Suppose we have an ideal I such that V (I ) contains the point p corresponding to
the prime (since R is a domain) ideal 0 ⊆ R. Then 0 contains I , which means I = 0. So
V (I ) = Spec(R).

Corollary 3.2. For any ring R and any point p ∈ Spec(R) let p be the corresponding prime
ideal in R. Then the closure of the point p is the closed subset V (p).

Proof. We know Spec(R/p) is homeomorphic to the closed subset V (p) ⊆ Spec(R) (Theo-
rem 1.9). This homeomorphism sends the prime ideal 0 in R/p to its inverse image in R,
which is p. So the closure of the point p in Spec(R) is V (p), by the lemma.

Definition. A topological space X is connected if X is nonempty and is not the union
of two disjoint nonempty closed subsets. We say X is irreducible if X is nonempty and
cannot be written as A∪B , for A,B proper closed subsets of X .

Example. The unit interval [0,1] ⊆R is connected but not irreducible: [0,1] = [0,1/2]∪
[1/2,1].

Lemma 3.3. For a ring R there is a one-to-one correspondence among the following:

(1) prime ideals in R;

(2) points in Spec(R);

(3) irreducible closed subsets of Spec(R).

Proof. The equivalence (1) ↔ (2) follows from the definition of Spec(R). For every point
p ∈ Spec(R), the closure {p} = V (p) is irreducible. Indeed, suppose V (p) = A ∪B for A,B
closed in Spec(R), and A 6=V (p) and B 6=V (p). Clearly p ∈ A or p ∈ B ; say p ∈ A. But then,
since A is closed, it must be that A ⊇ {p} =V (p), a contradiction. So V (p) is irreducible.

Conversely, I claim any irreducible closed subset of Spec(R) is the closure of a point.
The subset can be written as V (I ) ⊆ Spec(R); we may assume I is a radical ideal. I claim
that, if V (I ) is irreducible, then I must be prime. (The proof of this completes the proof,
since V (p) for a prime p is the closure of a point {p}.) Clearly I 6= R, since V (R) = ∅.
It remains to show that if a,b ∈ R satisfy ab ∈ I , then a ∈ I or b ∈ I . Suppose for a
contradiction that neither a nor b belongs to I . Then V (I + (a))(V (I ) and V (I + (b))(
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V (I ). We get a contradiction by proving that V (I ) = V (I + (a))∪V (I + (b)): Clearly the
inclusion ⊇ holds; we have

V (I + (a))∪V (I + (b)) =V ((I + (a))(I + (b))),

but (I + (a))(I + (b)) ⊆ I + (ab) ⊆ I since ab ∈ I . Therefore V (I ) ⊆V ((I + (a))(I + (b))).

17/10

Exercise. Show that closed points in Spec(R) are in one-to-one correspondence with
maximal ideals in R.

So we have one-to-one correspondences

{closed points in Spec(R)} ←→ {maximal ideals in R},

{irreducible closed subsets of Spec(R)} ←→ {prime ideals in R},

{closed subsets of Spec(R)} ←→ {radical ideals in R}.

Example. The subset {x y = 0} of A2
k is not irreducible: it’s the union of two irreducible

subsets {x = 0}∪ {y = 0}.

4 Operations on modules

Definition. Let M be a module over a ring R. We define the annihilator ideal to be

AnnR (M) := {a ∈ R : am = 0 ∀m ∈ M } .

Also the annihilator of an element m ∈ M is defined to be

AnnR (m) = {a ∈ R : am = 0} .

The direct sum of the R-modules M and N is the product set M ⊕N := M ×N with the
module structure

(m1,n1)+ (m2,n2) = (m1 +m2,n1 +n2),

a(m,n) = (am, an).

The direct product of a collection {Mα}α∈S of R-modules is
∏
α∈S Mα with obvious

module structure.
The direct sum of {Mα}α∈S is the submodule of the direct product consisting of ele-

ments (mα :α ∈ S) such that mα = 0 for all but finitely many α.
A free R-module is the direct sum of some collection of copies of R, written R⊕S for a

set S. (e.g., (r1, . . . ,rm ,0, . . . ,0, . . . ) is a typical element of R⊕R .)

This free module contains one copy of R for each element of S. Every element of R⊕S

is a finite R-linear combination of the basis elements (0, . . . ,0,1,0, . . . ). Using that, one
proves a ‘universal property’ of free modules: R-linear maps R⊕S → M (for any R-module
M) are in one-to-one correspondence with functions S → M .

13



Definition. A sequence of R-linear maps

· · · −→ Mi+1
di+1−→ Mi

di−→ Mi−1 −→ ·· ·

is called exact if im(di+1) = kerdi for every i .

Examples.

(1) A sequence 0 −→ M
f−→ N is exact iff f is injective.

(2) A sequence M
f−→ N −→ 0 is exact iff f is surjective.

(3) You can check (Exercise!) that the sequence 0 −→ M
f−→ N −→ 0 is exact iff M

f−→ N
is an isomorphism.

(4) Finally, can check (Exercise!) that the ‘short’ sequence

0 −→ A −→ B −→C −→ 0

is exact iff A is isomorphic to a submodule of B and C ∼= B/A.

An R-module M is generated by a subset S ⊆ M if M is the smallest submodule of M
containing S.

Definition. An R-module M is finitely generated (as an R-module) if M is generated by a
finite set S.

If a module M is generated by a set S, then we get a surjection

R⊕S −→ M −→ 0. exact

Given a set S of generators for an R-module M , let K = ker(R⊕S�M). Let T be a set of
generators for the R-module K . Then we have an exact sequence

R⊕T φ−→ R⊕S −→ M −→ 0.

Such a diagram is called a presentation of M as an R-module. In this way, we see that M is
completely determined by a set S and a set T ⊆ R⊕S .

Example. Consider the Z-module Z〈e1,e2 |2e1 = 2e2〉, ie Z⊕2/(2,−2). Can check that this
is isomorphic to Z⊕Z/2.

Definition. A module M over R is projective iff there is an R-module N such that M ⊕N
is free.

For example, a free R-module is projective.

Lemma 4.1. Let M be an R-module. The following are equivalent:

(1) M is projective as an R-module;

14



(2) For any short exact sequence

0 −→ A −→ B −→ M −→ 0,

the sequence splits, i.e. there is an R-linear map M → B such that the composition
M → B → M is the identity. (This implies B ∼= A⊕M .)

(3) For any short exact sequence

0 −→ A −→ B −→C −→ 0,

of R-modules and any R-linear map M →C , this map lifts to B ; that is, there is an
R-linear map M → B such that the composites M → B →C and M →C are equal.

Proof. (3) ⇒ (2): Apply (3) to the sequence in (2) and the identity map M → M .
(2) ⇒ (1): Let S be a set of generators for M : so we have the exact sequence

0 −→ K −→ R⊕S −→ M −→ 0.

Given (2) this sequence splits, so R⊕S ∼= M ⊕K . Therefore M is projective.
Suppose M is a projective R-module and B → C is a surjective R-linear map. We19/10

want to show that any R-linear map M →C lifts to a map M → B . There is an R-module
N such that M ⊕N ∼= R⊕S for some set S. Consider the projection R⊕S�M . Such a map
(M → C ??) is equivalent to a function S → C . For every s ∈ S pick an element of B that
maps to the image of s in C . This gives an R-linear map R⊕S → B (because the map B →C
is surjective). Restrict this to the submodule M ⊆ R⊕S to get a map M → B . Check that
this map composed with the given map B →C is the given map M →C .

Example. The Z-module Z/2 is not projective, since the exact sequence

0 −→Z
2−→Z−→Z/2 −→ 0

does not split: the only map Z/2 →Z is the zero map. (Generalise this. Exercise!)

Remark. A finitely generated projective R-module is equivalent to a vector bundle on
SpecR for a noetherian ring R.

Exercise. Show that a finitely generated projective module over a ring R is the summand
of a finitely generated free module, R⊕n for some n ∈N. (Use the Lemma.)

5 Direct limits

A directed set S is a poset S such that for any a,b ∈ S there is a c ∈ S such that a ≤ c and
b ≤ c. A directed system of sets A is a functor from a directed set to the category Set of
sets.1 That is, every s ∈ S is assigned a set As , and every pair of elements s ≤ t is assigned

a map As
fst−→ At such that

(1) fss is the identity on As ; and

1See Lang’s Algebra if you’re unfamiliar with functors.
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(2) if s ≤ t ≤ u in S, then fsu = ftu ◦ fst as maps As → Au .

Definition. Define the direct limit lim−−→ As of a directed system (As : s ∈ S) of sets to be the
quotient of the disjoint union

∐
s∈S As by the following relation: a ∈ As is equivalent to

b ∈ At if there is an element u ∈ S such that u ≥ s, u ≥ t , and fsu(a) = ftu(b) in Au .

Think of the greater elements of S as things coming later in time; so the relation
identifies things that are eventually equal.

The same definition defines the direct limit of a directed system of groups, rings,
R-modules, etc.

If (As : s ∈ S) is a directed system of R-modules, then the direct limit lim−−→ As is an
R-module: the sum of the elements a ∈ As and b ∈ At is given by an element u ∈ S such
that s ≤ u and t ≤ u; define a +b by mapping a and b into the R-module Au and adding
them there. One checks that this is well defined on lim−−→ As . Multiplication by an element
of R is defined similarly.

Exercise. Prove the universal property of direct limits of R-modules: for any directed
system (As : s ∈ S) of R-modules there is a one-to-one correspondence between R-linear
maps lim−−→ As → N and families of R-linear maps (As → lim−−→t∈S

At )s∈S such that for every

pair s ≤ t in S the composite As −→ At
g t−→ N is the map gs : As → N .

Example. The direct limit of the Z-modules

Z
2−→Z

2−→Z
2−→ ·· ·

is isomorphic to Z[ 1
2 ], the subgroup ofQ of elements a

2b . Indeed, the limit is isomorphic
to the direct limit

lim−−→(Z ,→ 1
2Z ,→ 1

4Z ,→··· ) = ⋃
s≥0

1
2sZ=Z[ 1

2 ].

Also, the direct limit of the Z-modules

Z
0−→Z

0−→Z
0−→ ·· ·

is the group 0.

6 Tensor products

Let R be a (commutative) ring and M , N R-modules. Then an R-bilinear map f : M ×N →
P is a function M ×N → P that is linear in each variable; that is, f (m,−) : N → P is an
R-linear map for every m ∈ M and f (−,n) : M → P is an R-linear map for every n ∈ N .

Theorem 6.1. For any two R-modules M and N there is an R-module M ⊗R N , called
the tensor product of M and N , with a bilinear map M ×N → M ⊗R N , such that for any
R-bilinear map f : M ×N → P there is a unique R-linear map

g : M ⊗R N → P

such that the composite M ×N −→ M ⊗R N
g−→ P is equal to f .
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Proof. Consider the free R-module R⊕(M×N ). Write a⊗b for the basis element correspond-
ing to a ∈ M , b ∈ N . So every element of R⊕(M×N ) is uniquely a finite sum

∑N
i=1 ri (mi ⊗ni )

for some ri ∈ R, mi ∈ M , ni ∈ N . Define M ⊗R N as the quotient of R⊕(M×N ) by the
following relations:

(m1 +m2)⊗n = m1 ⊗n +m2 ⊗n,

m ⊗ (n1 +n2) = m ⊗n1 +m ⊗n2,

(r m)⊗n = r (m ⊗n),

m ⊗ (r m) = r (m ⊗n)

(for every r ∈ R, mi ,m ∈ M , ni ,n ∈ N ). (That is, take the quotient by the submodule
generated by all elements (m1 +m2)⊗n − (m1 ⊗n +m2 ⊗n), etc.)

Clearly, by these relations, the obvious map M ×N → M ⊗R N is R-bilinear. (We’ve
forced it to be!) And for any R-module P with an R-bilinear map f : M ×N → P , there
is a corresponding R-linear map R⊕(M×N ) → P . Because f is bilinear, the submodule of
R⊕(M×N ) that we killed maps to 0 in P . So f factors through the quotient to give a map
g : M ⊗R N → P . Uniqueness of this map g is left as an exercise.

Tensor products allow us to describe bilinear maps in terms of linear maps, which are
simpler.

Remark. (1) By construction, every element of M ⊗R N can be written as a finite sum∑
ri (mi ⊗ni ) =∑

(ri mi )⊗ni . But it isn’t obvious how to tell whether two such sums
define the same element of M ⊗R N .
The elements of M⊗R N of the form m⊗n are called decomposable. Every element of
M ⊗R N is a finite sum of decomposable elements but might not be decomposable
itself.

(2) It can be hard to tell whether two elements of M ⊗R N are equal. For instance, in
the Z-moduleQ⊗ZZ/2, we have

1⊗1 = 2( 1
2 )⊗1 = 1

2 ⊗2 = 1
2 ⊗0 = 0.

In factQ⊗ZZ/2 = 0, as we will see.

(3) For a noncommutative ring R , the tensor product M ⊗R N is defined whenever M is
a right R-module and N is a left R-module. In this case, we have the equality

(mr )⊗n = m ⊗ (r n).

In general (for R noncommutative), the tensor product M ⊗R N is an abelian group,
but not necessarily an R-module. If there is a commutative ring R and a homomor-
phism from A into the centre of R, then M ⊗R N is at least an A-module, though.

Exercise. Show that (for R commutative) the tensor product is a functor in each variable.
In particular, if M1 → M2 is an R-linear map, then the tensor product gives an R-linear
map M1 ⊗R N → M2 ⊗R N . (Hint: use the universal property of tensor products.)

21/10
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Theorem 6.2. For all R-modules A, B , and C , there exist isomorphisms:

(1) A⊗R B
∼=−→ B ⊗R A;

(2) (A⊗R B)⊗R C
∼=−→ A⊗R (B ⊗R C );

(3) (A⊕B)⊗R C
∼=−→ (A⊗R C )⊕ (B ⊗R C );

(4) R ⊗R A
∼=−→ A.

Proof sketch. The main point is to construct maps in both directions using the universal
property of ⊗: For (1), for example, we want to try to map a⊗b to b⊗a, a ∈ A, b ∈ B . By the
universal property of A⊗R B it suffices to construct an R-bilinear map A×B → B ⊗R A; the
obvious choice is (a,b) 7→ b⊗a. But this is bilinear, so we get the map we want. Composing
this map with the map we obtain in the other direction is the identity on decomposable
elements, hence the identity on all elements.

This theorem implies, for instance, that (R⊕a)⊗R (R⊕b)
∼=−→ R⊕ab for a,b ∈ N. Set

M = R⊕a and N = R⊕b . If M is a free R-module with basis e1, . . . ,ea and N is free with
basis f1, . . . , fb , then M ⊗R N is a free R-module with basis elements ei ⊗ f j for 1 ≤ i ≤ a,
1 ≤ j ≤ b. So every element of M ⊗R N can be uniquely written as a sum∑

1≤i≤a
1≤ j≤b

ci j ei ⊗ f j .

Contrast this with the direct-sum situation: R⊕a ⊕R⊕b
∼=−→ R⊕a+b .

Lemma 6.3. Let A → B → C → 0 be an exact sequence of R-modules. Then for every
R-module M , the maps

A⊗R M −→ B ⊗R M −→C ⊗R M −→ 0

form an exact sequence.

(Note that this lemma does not generalise to exact sequences of arbitrary shape!)

Proof sketch. The image im(B ⊗R M →C ⊗R M) contains all decomposable elements of
C ⊗R M (since the given map B →C is surjective), so it contains all elements of C ⊗R M .

Clearly the composite map A⊗R M → B ⊗R M →C ⊗R M is 0, because the given map
A → 0 is 0. That is, we have the inclusion

im(A⊗R M → B ⊗R M) ⊆ ker(B ⊗R M →C ⊗R M).

To prove exactness use the universal property of B ⊗R M .

Example. For an element f ∈ R consider the exact sequence

R
f−→ R�R/( f ) −→ 0

(where the map R
f−→ R is ‘multiplication by f ’). The lemma gives that for any R-module

M , we have an isomorphism
M ⊗R R/( f ) ∼= M/ f M .

18



Using that, we can write out what the tensor product of any two finitely generated R-
modules over a PID R is. (For this we assume the classification of finitely generated
modules over a PID; see Lang’s Algebra if this is unfamiliar.)

More generally, the lemma implies that for any ring R, if M is an R-module with
generators e1, . . . ,ea and relations ri ∈ R⊕a and N is an R-module with generators f1, . . . , fb

and relations s j ∈ R⊕b , then the tensor product M ⊗R N is the R-module with generators
ei ⊗ f j (1 ≤ i ≤ a, 1 ≤ j ≤ b) modulo relations given by ei ⊗ s j = 0 and ri ⊗ f j = 0 (for all i , j
that make sense).

6.1 Algebras and tensor products

Definition. For a commutative ring A, an A-algebra is a ring B with a given ring homo-
morphism A → B .

Example. The polynomial ring k[x1, . . . , xn] is a k-algebra (and the given homomorphism
is the obvious one).

Definition. An A-algebra homomorphism B →C is a ring homomorphism B →C such
that the diagram

A B

C

commutes.

This definition of morphism makes A-algebras (for a fixed ring A) into a category. It
is often more natural to work in the category of k-algebras for a field k, rather than all
commutative rings.

Remark. Among noncommutative rings an A-algebra B means A is a commutative ring,
B is perhaps noncommutative, and there is a given homomorphism A → Z (B), the centre
of B .

For example, the ring Mn(k) of n ×n matrices over a field k is a k-algebra: the given
homomorphism sends an element a ∈ k to the diagonal matrix aIn (In is the identity
matrix). Likewise, for a group G , the group ring kG is a k-algebra.

Back to commutative rings:
For a ring A, the polynomial ring A[x1, . . . , xn] has the following universal property:

For every A-algebra B , A-algebra homomorphisms A[x1, . . . , xn] → B are equivalent to
functions {1,2, . . . ,n} → B . We say an A-algebra B is of finite type of it is finitely generated as
an A-algebra. Equivalently, B ∼= A[x1, . . . , xn]/I for some n ∈N and ideal I ⊆ A[x1, . . . , xn].

We say a morphism X → Y of affine schemes is of finite type if the ring O (X ) of regular
functions is an algebra of finite type over O (Y ). Equivalently, X is of finite type over Y if X
is isomorphic to a closed subspace ofAn

Y for some n ∈N. (Affine spaceAn
Y is defined to be

Speck[x1, . . . , xn] endowed with the Zariski topology.)

Definition. A closed subscheme of Spec(R) is an affine scheme of the form Spec(R/I ).
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Example. Suppose k is a field and we have a map X = Spec(O (X )) → Spec(k). Then the
map X → Speck is of finite type if and only if O (X ) is a finitely generated k-algebra, if and

only if there is an isomorphism O (X )
∼=−→ k[x1, . . . , xn]/I , n ∈N, for some ideal I .

Definition. An affine variety over a field k is an affine scheme of the form Spec(R), such
that R is a k-algebra of finite type and R is a domain. In particular, an affine variety is
irreducible as a topological space.

Example. An
k is an affine variety over k for n ≥ 0. Also, { f = 0} ⊆ An

k for f an irreducible
polynomial in k[x1, . . . , xn] is an affine variety.

If B is an algebra over a ring A, then there is a natural functor from the category B-Mod
of B-modules to A-Mod. Given a ring homomorphism f : A → B and a B-module M , we
can view M as an A-module by defining a ·m := f (a)m ∈ M for a ∈ A, m ∈ M .

There is also a less obvious functor, extension of scalars, from A-Mod to B-Mod. For
an A-module M , I claim M ⊗A B is a B-module in a natural way. We define b1(m ⊗b2) =
m ⊗b1b2. Using the universal property of ⊗, show this is well defined.

Example. If M if a free A-module of rank n, then M ⊗A B is a free B-module of rank n (by
the basic properties of⊗). More generally, if M has a presentation M = A 〈e1, . . . ,ea |ri ∈ A⊕a〉,
then M ⊗A B = B 〈e1, . . . ,ea |ri ∈ B⊕〉.
Example. Let M be the Z-module M =Z〈e1,e2 |2e1 = 2e2〉 (∼=Z⊕Z/2). Then we see that

M ⊗ZQ∼=Z〈e1,e2 |2e1 = 2e2〉 ∼=Q2/Q(2,−2) ∼=Q.

And

M ⊗Z (Z/2) ∼=Z/2〈e1,e2 |2e1 = 2e2〉
= (Z/2)⊕2/(Z/2)(2,−2) ∼= (Z/2)⊕2.

If B and C are A-algebras, then the tensor product B ⊗A C is an A-algebra with multiplica-
tion defined on decomposable elements: (b1 ⊗ c1)(b2 ⊗ c2) = b1b2 ⊗ c1c2. One checks this
is well-defined.

24/10

Examples.

(1) Q⊗Z (Z/2) ∼= Q/2Q = 0. (For the first isomorphism, recall Lemma 6.3 and the
following example.)

(2) For a field k, we have an isomorphism of polynomial rings: k[x]⊗k k[y] ∼= k[x, y].
The obvious map k[x]⊗k k[y] → k[x, y] is an isomorphism since a basis for k[x]⊗k

k[y] given by the elements xi ⊗ y j , i ≥ 0, j ≥ 0, maps to a basis of elements xi y j for
k[x, y]. (Notice that every module over a field is free; i.e., every vector space has a
basis.)
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Remark. In the Part III Algebraic Geometry course,An
k means kn with the Zariski topology.

Here, An
k = Speck[x1, . . . , xn] with the Zariski topology. One can actually view kn as a

subset of Speck[x1, . . . , xn] by the following inclusion:

(a1, . . . , an) 7→ ker(k[x1, . . . , xn] → k),

where the map k[x1, . . . , xn] → k is given by evaluation at (a1, . . . , an). This discrepancy
is nothing to worry about, though, because the categories of affine k-varieties for each
definition ofAn

k (for k algebraically closed) are equivalent. For example, in both categories
the collection of maps Am

k →An
k consists of k-algebra homomorphisms k[x1, . . . , xn] →

k[x1, . . . , xm], which are just polynomials ( f1(x1, . . . , xm), . . . , fn(x1, . . . , xm)) over k.

6.2 Exactness properties of tensor products

We showed (Lemma 6.3) that tensoring an exact sequence

A −→ B −→C −→ 0

of R-modules with any R-module M gives an exact sequence. But it’s not true that
tensoring an exact sequence, e.g.,

A −→ B −→C ,

with M gives an exact sequence in general.

Example. Indeed, consider the product (0 −→Z
2−→Z)⊗Z (Z/2). The result is a sequence

0 −→Z/2
2−→Z/2, (∗)

but the map 2: Z/2 →Z/2, x 7→ 2x, is just the zero map; so the sequence (∗) is not exact
since the map 0: Z/2 →Z/2 is not injective.

It turns out to be fruitful to analyse those modules M for which tensoring by M does
preserve exactness:

Definition. For a ring R , an R-module is flat if and only if the functor N 7→ M⊗R N is exact
(i.e., for an exact sequence N1 → N2 → N3, the sequence M ⊗R N1 → M ⊗R N2 → M ⊗R N3

is exact).

Examples. (1) Z/2 is not flat as a Z-module, as we’ve seen.

(2) Clearly R is flat as an R-module.

(3) Also, the direct sum of any collection of flat modules is flat, since the tensor product
⊗R is distributive over the direct sum (of even infinitely many modules). So every
free R-module is flat.

It sounds like checking flatness will turn out to be quite difficult, as it requires con-
sidering many sequences. The following theorem allows us to check only some of those
sequences.
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Theorem 6.4. If R is a ring and M is an R-module, then the following are equivalent:

(1) M is a flat R-module;

(2) Tensoring with M preserves injections of R-modules;

(3) For any ideal I ⊆ R the R-linear map M ⊗R I → M ⊗R R ∼= M is injective.

Proof. That (1) implies (2) is clear from the definition of a flat R-module and the expres-
sion of an injection as an exact sequence. That (2) implies (3) is also clear. We will prove
that (2) implies (1) and delay the proof that (3) implies (2). (Though there is an elementary
proof, it will be easier to prove this after we have introduced the Tor functor: Lemma
10.9.)

Let N1
f1−→ N2

f2−→ N3 be an exact sequence of R-modules. Then we have an exact
sequence

N1
f1−→ N2

f2−→ f2(N2) −→ 0,

since f2 is a surjection onto its image. So we have an exact sequence

M ⊗R N1 −→ M ⊗R N2 −→ M ⊗R f2(N2) −→ 0.

Since M satisfies (2), the map M ⊗R f2(N2) → M ⊗R N3 is injective. Therefore the sequence

M ⊗R N1 −→ M ⊗R N2 −→ M ⊗R N3

is exact, as the map M ⊗R N2 −→ M ⊗R N3 factors through M ⊗R f2(N2).

Exercise. Using Theorem 6.4, prove the following:

(1) For a domain R, any flat R-module is torsion-free. (By definition, an R-module is
torsion-free if, for all r ∈ R, m ∈ M , the equation r m = 0 implies r = 0R or m = 0M .)

(2) If R is a PID, then an R-module is flat if and only if it’s torsion-free. (e.g., R = Z,
R = k[x], . . . )

We say an R-algebra A is flat if and only if A is flat as an R-module.

7 Localisation

Localising a ring means ‘inverting some elements of the ring’, and it’s related to concen-
trating attention near a point in a space. The process also generalises passing from a
domain R to FracR, its field of fractions (e.g., Z Q).

Example. We can think of C[x] as a ring of functions C→ C. Its fraction field is called

C(x), the field of rational functions f (x)
g (x) , f , g ∈ C[x], g 6= 0. An element of C(x) can be

viewed as a function CàS → C (where S is the finite set of points a where g (a) = 0). A
typical localisation of C[x] is the ring of rational functions defined near 0 in C, that is, the

set
{

f (x)
g (x) : g (0) 6= 0

}
.

Definition. A subset S of a ring R is multiplicatively closed if it is a submonoid of (R, ·);
that is, 1 ∈ S and the product of any two elements of S is in S.
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Theorem 7.1. Let R be a ring and S a multiplicatively closed subset of R. Then there is a
ring R[S−1] with a ring homomorphism f : R → R[S−1] such that

(1) for every s ∈ S the image f (s) is invertible in R[S−1];

(2) R[S−1] is universal with respect to property (1): That is, for any ring B and ring
homomorphism g : R → B with the property that all elements of R map to invertible
elements of B , there is a unique ring homomorphism h : R[S−1] → B such that
g = h f .

Before proving the theorem, we prove that the universal property (2) characterises
R[S−1] up to unique isomorphism:

Suppose the rings C1 and C2 have properties (1) and (2). Thus we have ring homomor-
phisms f1 : R →C1 and f2 : R →C2 such that (1) and (2) hold for both (C1, f1) and (C2, f2).
Then by property (2) there are ring homomorphisms g1 : C1 →C2 and g2 : C2 →C1 such
that f2 = g1 f1 and f1 = g2 f2. You can check that g1g2 and g2g1 are both identity maps (by
the uniqueness part of (2)). (Exercise!) So g1 : C1 →C2 is an isomorphism of rings. It isn’t
difficult to see that such an isomorphism must be unique.

Sketch of proof of 7.1. Define elements of R[S−1] as ‘fractions’ a
s , a ∈ R, s ∈ S. That is,

R[S−1] is the set of equivalence classes for an equivalence relation on R ×S.

(One’s first idea for such an equivalence relation might be to say a
s = b

t iff
at = bs in R. But this does not define an equivalence relation in general.
Indeed, if (at−bs)u = 0 in R for some a,b ∈ R , s, t ,u ∈ S, then — as u becomes
invertible in R[S−1] — we would also have a

s = b
t in R[S−1].)

In general we say that (a, s) ∼ (b, t ) and write a
s = b

t if (at −bs)u = 0 for some u ∈ S. I claim
this is an equivalence relation. That it is reflexive and symmetric is obvious. Suppose
a
s = b

t and b
t = c

u . Then we have v, w ∈ S such that (at −bs)v = 0 and (bu − ct)w = 0.
Multiplying each side of the first equation by uw and each side of the second by sv , we
see that

atuv w = bsuv w = cst v w,

so (au − cs)t v w = 0 in R. But t v w belongs to S, since S is multiplicatively closed. There-
fore a

s = c
u , which proves the relation is transitive.

So we have a set R[S−1] of equivalence classes of fractions a
s , a ∈ R , s ∈ S. One defines

addition and multiplication in R[S−1] by the usual rules for fractions:

a

s
+ b

t
= at +bs

st
,

a

s
· b

t
= ab

st
.

(Note that st ∈ S since S is multiplicatively closed.) The homomorphism R → R[S−1] is
given by a 7→ a

1 . The following exercise completes the proof:

Exercise. Check that these operations are well defined and that they make R[S−1] into a
ring. Prove the universal property (2) of this ring R[S−1].
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Lemma 7.2. The kernel of the ring homomorphism R → R[S−1], a 7→ a
1 , is the set

{a ∈ R : as = 0 for some s ∈ S} .

Proof. The equality a
1 = 0

1 in R[S−1] holds if and only if there is some s ∈ S such that
as = (a ·1−0 ·1)s = 0 in R.

Example. Suppose R is a domain and S is a multiplicatively closed subset of R à {0}.
Define the ring R[S−1] to be the fraction field Frac(R). In this case R ⊂ Frac(R) by the
lemma.

For example, Frac(Z) = Q, and Frac(k[x1, . . . , xn]) is called the field k(x1, . . . , xn) of
rational functions over the field k in n variables. The elements of the field k(x1, . . . , xn) of

rational functions are of the form f (x1,...,xn )
g (x1,...,xn ) for f , g ∈ k[x1, . . . , xn], g 6= 0.

More generally, for R a domain and S a multiplicatively closed subset of R à {0}, we
have inclusions R ⊆ R[S−1] ⊆ Frac(R). So in this case we could define R[S−1] as the subring
of Frac(R) generated by R and the inverses of elements s ∈ S.

But if 0 ∈ S then R[S−1] = 0, which is not a subring of Frac(R) (since 1Frac(R) ∉ 0).

7.1 Special cases of localisation

(1) For a ring R and an element f ∈ R, define

R
[

1
f

]
:= R[S−1] where S = {

f n : n ≥ 0
}

.

(2) For a ring R and a prime ideal p of R the set R àp is multiplicatively closed. (This is
exactly what it means for p to be prime.) So we can define Rp := R[S−1], called the
localisation of R at the prime ideal p.

Example. For p a prime number, the ring Z[1/p] is given by

Z
[

1
p

]
=

{
a

pc ∈Q : a ∈Z, c ≥ 0
}

,

a subring ofQ. And by contrast,

Z(p) =
{ a

b ∈Q : a ∈Z, b ∈Z, p - b
}

.

We can also invert elements in polynomial rings. For example, define k[x, x−1] to be
the subring k[x, x−1] = k[x][ 1

x ] of k(x), the field of rational functions over k. An element

of k[x, x−1] is a rational function that can be written as f (x)
xc for some f ∈ k[x], c ≥ 0.

Equivalently, k[x, x−1] is the ring of Laurent polynomials

a−n x−n +·· ·+an xn , ai ∈ k.

Thus an element of C[x, x−1] can be viewed as a function Cà {0} →C, whereas C[x](x)

is the ring of rational functions defined on some neighbourhood of 0.
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7.2 Local rings

Definition. A ring R is local if it has exactly one maximal ideal m. The field R/m is called
the residue field of R.

We will often use the following characterisation of local rings to prove that a ring is
local.

Lemma 7.3. A ring R is local if and only if the nonunits in R form an ideal.

Proof. Suppose R is local with maximal ideal m. If a ∈m then a is not a unit; else we
would have aa−1 = 1 ∈m. Conversely, if a ∈ R àm then a is a unit, as we’ll show. Suppose
for a contradiction that (a) 6= R. Then (a) must be contained in some (the only) maximal
ideal. But then (a) ⊆m, which contradicts our assumption that a ∈ R àm. So the non
units in R are exactly the elements of m, which is an ideal.

For the other implication, suppose the set I of nonunits in R forms an ideal. Then
I 6= R since 1 ∉ I . And if J is any ideal strictly larger than I , then J contains some unit,
so J = R. So I is maximal. If m 6= I were some maximal ideal distinct from I , then there
would be some element of m that wasn’t an element of I ; that element would have to be a
unit, which would guarantee that m= R, a contradiction. Therefore there is no such m,
and I is the only maximal ideal in R.

Exercise. For a field k and a positive integer n, the power series ring k�x1, . . . , xn� is a local
ring. Prove this using the lemma (7.3). Recall an element of k�x1, . . . , xn� is an infinite
formal sum

∑
i j≥0 ai1···in xi1

1 · · ·xin
n , ai1···in ∈ k.

Theorem 7.4. Let R be a ring and S a multiplicatively closed subset of R. Then the prime
ideals in R[S−1] are in one-to-one correspondence with prime ideals p ⊂ R such that
p∩S =∅.

Proof. Write f : R → R[S−1] for the ring homomorphism given by the localisation. This
induces a (continuous) map of spectra g : SpecR[S−1] → SpecR that sends a prime ideal
p in R[S−1] to its preimage f −1(p) in R. (cf. Theorem 1.9.) We will show that, for every
prime ideal p in R[S−1], the intersection f −1(p)∩S is empty. If s ∈ S∩ f −1(p), then f (s) ∈ p
and f (s) is also a unit in R[S−1]; this is impossible since the prime ideal p contains no
units.

Next we’ll show that the map g : SpecR[S−1] → SpecR is injective. That is, a prime
ideal p⊂ R[S−1] is determined by its preimage f −1(p) ⊂ R. For elements a ∈ R and s ∈ S,
the fraction a

s belongs to p if and only if a
1 ∈ p since s is a unit in R[S−1]. But this is true if

and only if a ∈ f −1(p) in R. So the prime ideal p⊂ R[S−1] is determined by its preimage
f −1(p). That is, the map g is injective.

It remains to show that for every prime ideal q⊂ R disjoint from S, there is a prime
ideal p⊂ R[S−1] such that f −1(p) = q. Consider the diagram

R Frac(R/q)

R[S−1]

R/q ⊂
f h
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We can construct a ring homomorphism h : R[S−1] → Frac(R/q) as shown that makes
the diagram commute if and only if the elements of S map to units in Frac(R/q) (by the
universal property of R[S−1]). The elements of S do map to units in the quotient Frac(R/q),
since q∩S =∅. Defining p := kerh, we see that p is a prime ideal of R[S−1]. We want to
show that f −1(p) = q. For an element a ∈ R, we have a ∈ f −1(p) if and only if f (a) ∈ p,
if and only if h( f a) = 0 in Frac(R/q). This occurs if and only if a = 0 in R/q, since the
inclusion R/q ,→ Frac(R/q) is injective. But this is equivalent to a ∈ q, and so f −1(p) = q,
as desired.

Notice that the correspondence described by Theorem 7.4 is compatible with in-
clusion: if p and q are prime ideals in R disjoint from S and p ⊆ q, then the inclusion
f −1(p) ⊆ f −1(q) certainly also holds.

Corollary 7.5. The localisation of any ring R at any prime ideal p is a local ring.

Proof. The prime ideals in Rp are in one-to-one correspondence with the prime ideals
in R that are contained in p. In this collection of prime ideals, there is a unique maximal
element p⊂ R. So Rp has a unique maximal ideal.

(Explicitly, this maximal ideal is the extended ideal pRp.)

Example. (1) Any field is a local ring.

(2) The rings Z(p) for a prime number p and the polynomial ring k[x](x) are local rings.
The residue fields of these two local rings are Z/(p) and k, respectively.

(3) More generally, for any ring R and any prime ideal p in R, the residue field of the
local ring Rp is Frac(R/p), as you can check (Exercise!).

Exercise. Describe which rational functions are in the local ring C[x, y](x). The residue
field of C[x, y](x) is C(y); try to say ‘geometrically’ what the restriction map C[x, y](x)�
C(y) is.

In general R[S−1] need not be a local ring.

Exercise. Show Z[1/p] is not local.

Definition. For a ring R and an element f ∈ R, a subset of SpecR of the form

D( f ) := Spec(R)àV (( f )) = { f 6= 0}

is called a standard open subset of SpecR.

Exercise. Show that the (continuous) map Spec[1/ f ] → SpecR is a homeomorphism
onto its image. Show that the image is the standard open set D( f ) ⊆ Spec(R).

Remark. One says a regular function on { f 6= 0} ⊆ Spec(R) is exactly an element of R[1/ f ].

Insert Pictures.28/10
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7.3 Localisation of modules

Let R be a ring, S ⊆ R a multiplicatively closed subset of R, and M an R-module. We
define an R[S−1]-module M [S−1] in the following way: elements of M [S−1] are written m

s ,
m ∈ M , s ∈ S, and we say that m

s = n
t if there is an element u ∈ S such that u(tm − sn) = 0.

This defines an equivalence relation on M ×S, so it defines a set M [S−1] of equivalence
classes. Addition and multiplication of elements of M [S−1] are defined by the obvious
formulas:

m
s + n

t = tm+sn
st ; m

s · n
t = ms

nt .

In particular, we have M [ 1
f ] for f ∈ R and Mp for a prime ideal p of R.

An R-linear map f : M → N gives an R[S−1]-linear map f [S−1] : M [S−1] → N [S−1]
defined by

f [S−1] : m
s 7→ f (n)

s .

This makes the assignment M 7→ M [S−1] into a functor from the category R-Mod of
R-modules to the category R[S−1]-Mod of R[S−1]-modules.

Theorem 7.6. The functor M 7→ M [S−1] is exact. That is, if M1
f1−→ M2

f2−→ M3 is an exact
sequence of R-modules, then the induced sequence

M1[S−1]
f1[S−1]−→ M2[S−1]

f2[S−1]−→ M3[S−1]

is exact.

Proof. Since g f = 0 the map g [S−1] f [S−1] is also zero (because M 7→ M [S−1]) is a functor).

That is, an element m
s ∈ M1[S−1] maps first to f (m)

s in M2[S−1], and then to g ( f (m))
s = 0

s = 0
1

in M3[S−1]. Thus we have proven the containment im f1[S−1] ⊆ ker f2[S−1].
Suppose an element m

s ∈ M2[S−1] maps to 0 ∈ M3[S−1] (under f2[S−1]). That is, g (m)
s =

0 in M3[S−1], so there is an element t ∈ S such that t g (m) = 0. Since g is R-linear, it must
be that g (tm) = 0 in M3. By the exactness of the first sequence at M2, there is an element
m1 ∈ M1 such that f (m1) = tm. Then f1[S−1] maps the element m1

st in M1[S−1] to the

element f (m1)
st = tm

st = m
s in M2[S−1]. Therefore im f1[S−1] = ker f2[S−1], q.e.d.

Theorem 7.7. Let R be a ring, S a multiplicatively closed subset of R, and M and R-
module. Then there is an isomorphism of R[S−1]-modules

M ⊗R R[S−1]
∼=−→ M [S−1].

Proof. Omitted. See Atiyah–MacDonald or check it yourself.

Corollary 7.8. For every ring R and multiplicatively closed subset S ⊆ R, the localisation
R[S−1] is a flat R-algebra.

Proof. Apply Theorems 7.6 and 7.7.
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Example. Let M be the Z-module

M =Z⊕2 ⊕Z/2⊕Z/8⊕Z/5.

The localisation of M at the prime ideal (0) ⊂Z is M ⊗ZQ∼=Q2, sinceQ=Z(0).
The localisation of M at the prime (2) ⊂Z is given by:

M ⊗ZZ(2) = (Z(2))
⊕2 ⊕Z/2⊕Z/8.

Another example:
M(5)

∼= (Z(5))
⊕2 ⊕Z/5.

For a prime number not equal to 2 or 5, we have

M(p)
∼= (Z(p))

⊕2.

Definition. We say a property P of rings R is local if R has property P if and only if all
localisations of R at prime ideals p have the same property.

Likewise, we say a property P of R-modules M is local if M has property P if and only
if Mp has property P for every prime ideal p⊂ R.

Lemma 7.9. Let R be a ring and M an R-module. Then the following are equivalent:

(1) M = 0;

(2) Mp = 0 for every prime ideal p⊂ R;

(3) Mm = 0 for every maximal ideal m⊂ R.

That is, being 0 is a local property of R-modules.

Proof. The implication (1)⇐(2) is easy, and the implication (2)⇐(3) is trivial.
Suppose M is a nonzero R-module and that x is a nonzero element of M . Let I be the

annihilator AnnR (x) in R of x, an ideal of R . Note I 6= R since 1·x 6= 0 ∈ M . So I is contained
in some maximal ideal m⊂ R. We will show that x 6= 0 in Mm. If the equation x

1 = 0
1 holds

in Mm, then there is some s ∈ R àm such that sx = 0. But then s ∈ AnnR (x) = I ⊆m, a
contradiction. So in fact Mm 6= 0.

Lemma 7.10. Let R be a ring and f : M → N an R-linear map. The following are equiva-
lent:

(1) f is injective;

(2) f is locally injective: fp : Mp → Np is injective for every prime ideal p⊂ R;

(3) fm : Mm → Nm is injective for every maximal ideal m⊂ R.

Likewise for f ‘surjective’ or ‘an isomorphism’.

Proof. By Theorem 7.7 we can identify Mp with M ⊗R Rp. Then the implication (1)⇐(2)
holds since Rp is flat over R. Again, (3) is a special case of (2), so we need only prove that
(3) implies (1).
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Let f : M → N be an R-linear map such that fm : Mm → Nm is injective for every
maximal ideal m⊂ R. Let K = ker f . We have an exact sequence

0 −→ K −→ M
f−→ N

of R-modules. Since localisation is an exact functor (Theorem Theorem 7.6), we have a
corresponding exact sequence

0 −→ Km −→ Mm
fm−→ Nm

for every maximal ideal m⊂ R . Here fm is injective, so Km = 0 (by exactness). The previous
lemma (7.9) guarantees that K must be 0. That is, f is injective.

A similar proof applies when f is surjective or an isomorphism.

Flatness is also a local property of R-modules:

Lemma 7.11. Let R be a ring and M an R-module. The following are equivalent:

(1) M is a flat R-module;

(2) Mp is a flat Rp-module for every prime ideal p⊂ R;

(3) Mm is a flat Rm-module for every maximal ideal m⊂ R.

Proof. First note that flatness is preserved by any extension of scalars: If R → S is a ring
homomorphism and M is a flat R-module, then the extended module M ⊗R S is a flat
S-module. (To prove this, prove that (M ⊗R S)⊗S N ∼= M ⊗R (S ⊗R N ) = M ⊗R N for any
S-module N . Exercise!) So if M is a flat R-module, then Mp = M ⊗R Rp is a flat Rp-module
for every prime p⊂ R. This proves that (1) implies (2).

As usual, (3) is a special case of (2).
Suppose M is an R-module such that Mm is a flat Rm-module for every maximal ideal

m⊂ R . By Theorem 6.4, it suffices to show that tensoring with M preserves injectivity. Let
A → B be an injective R-linear map. We want to show that the induced map A⊗R M →
B ⊗R M is injective. We know that Am → Bm is injective for every maximal ideal m ⊂ R,
since localisation defines an exact functor. Since Mm is a flat Rm-module, the map
Am ⊗Rm Mm → Bm ⊗Rm Mm is injective for every maximal ideal m ⊂ R. You can check
(Exercise!) that this map is the localisation at m of the map A ⊗R M → B ⊗R M . By the
previous lemma, the map A⊗R M → B ⊗R M is injective. So M is R-flat.

7.4 Nakayama’s Lemma

Lemma 7.12 (Nakayama’s Lemma). Let M be a finitely generated module over a local
ring R with maximal ideal m. If M ⊗R (R/m) = 0, then M = 0.

Proof. We have 0 = M ⊗R (R/m) = M/(mM) (Why?!!!). That is, we have mM = M . Suppose
M 6= 0 and let x1, . . . , xn be a set of generators for M as an R-module, with n as small as
possible. Then xn ∈mM , so xn can be written as:

xn = a1x1 +a2x2 +·· ·+an xn
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with the ai in the maximal ideal m. Rearranging, we have the equation

(1−an)xn = a1x1 +·· ·+an−1xn−1. (†)

But 1− an does not belong to m (since 1 = 1− an + an does not belong to m), so 1− an

is a unit in the local ring R. Multiplying each side of (†) by (1− an)−1 thus shows that
xn ∈ Rx1 +·· ·+Rxn−1. But then M is generated as an R-module by the n −1 elements
x1, . . . , xn−1, a contradiction. Therefore M = 0.

31/10

Example. Beware: Nakayama’s lemma fails for non-finitely generated modules over a
local ring. Let R =Z(2) =

{ a
b : b odd

}
, M =Q. Then M is a non-finitely generated R-module.

Here M 6= 0 but

M ⊗Z(2) Z/2 = M ⊗Z(2) Z(2)/2Z(2) = M/2M =Q/2Q = 0.

Corollary 7.13 (of Lemma 7.12). Let M be a finitely generated module over a local ring
R. Then the elements x1, . . . , xn generate M as an R-module if and only if the images of
x1, . . . , xn span the R/m-vector space M ⊗R R/m(= M/mM).

Proof. The ’only if’ implication ⇒ is trivial.
Suppose that the images of x1, . . . , xn ∈ M span the R/m-vector space M/mM . Let Q

be the quotient of M by the R-submodule generated by x1, . . . , xn . We want to show that
Q is 0 as an R-module. Clearly Q is a finitely generated R-module, so by Nakayama Q = 0
if we have Q ⊗R R/m= 0. We have an exact sequence

R⊕n −→ M −→Q −→ 0

where the map R⊕n −→ M is given by sending the i th generator of R⊕n to xi . This induces
an exact sequence of modules

(R/m)⊕n�M ⊗R R/m−→Q ⊗R R/m−→ 0,

where the first map is surjective by assumption. Therefore Q ⊗R R/m= 0.

Remark. (1) Why is Z/8⊗ZZ(2)
∼=Z/8? (Recall Example 7.3.) Because all the elements

of S =Zà (2) act invertibly on Z/8, so (Z/8)[S−1] ∼=Z/8. (If m ∈Z/8 and s ∈Zà (2),
then m

s ∈ (Z/8)[S−1] is equal to the element y ∈Z/8 such that s y = m.)

(2) Notation: M
f
�N means f is surjective; M

f
,→ N means f is injective.

8 Noetherian rings2

Definition. A ring R is noetherian if every sequence I1 ⊆ I2 ⊆ ·· · of ideals in R terminates;
that is, there is N > 0 such that IN = IN+1 = ·· · .

We say R satisfies the ascending chain condition (ACC) on ideals in this case. A ring R
is artinian if it satisfies the descending chain condition (DCC) on ideals.

2Due to Emmy Noether, 1882–1935.
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Theorem 8.1. Let R be a ring. The following are equivalent:

(1) R is noetherian (ie, R satisfies ACC for ideals);

(2) every ideal in R is finitely generated.

Proof. First suppose that R is noetherian and suppose I be an ideal in R that is not finitely
generated. Then I 6= 0, so pick a nonzero element x1 ∈ I . Then I 6= (x1) since I is not
finitely generated, so can pick x2 ∈ I à (x1). Then I 6= (x1, x2), so pick x3 ∈ I à (x1, x2).
Repeat. We get an infinitely increasing sequence of ideals:

0( (x1)( (x1, x2)( · · ·(R.

This is a contradiction, so I is finitely generated.
Conversely, suppose every ideal in R is finitely generated. Let I1 ⊆ I2 ⊆ ·· · be a chain

of ideals in R. Let J = ⋃
n In , which is an ideal. By assumption J is finitely generated

as an ideal: say J = (x1, . . . , xn). Each xi belongs to some I j , so, taking the max of these
finitely many j s, there is a j > 0 such that x1, . . . , xn ∈ I j . So J = I j , whence the sequence
terminates: I j = I j+1 = I j+2 = ·· · .
Examples. (1) Every field is noetherian and artinian.

(2) The ring Z is noetherian but not artinian. It’s not artinian since it contains the
strictly decreasing chain

(2)) (4)) (8)) · · · .

Every PID is noetherian, since every ideal is generated by one element. So likewise
the polynomial ring k[x], for k a field, is noetherian but not artinian. (Exercise!)

(3) The polynomial ring k[x1, x2, . . . ] in countably many variables is neither noetherian
nor artinian. The chain of ideals

0( (x1)( (x1, x2)( (x1, x2, x3)( · · ·

shows that it’s not noetherian. But R = k[x1, x2, . . . ] is a domain, so R is contained
in its fraction field FracR, which is, of course, noetherian. Thus a subring of a
noetherian ring need not be noetherian.

(4) Later we’ll show that every artinian ring is noetherian: Theorem 12.4.

Lemma 8.2. Any quotient ring of a noetherian ring is noetherian. Likewise for artinian
rings.

Proof. Let R be a noetherian ring and I an ideal of R. There is a one-to-one order-
preserving correspondence between ideals in R/I and ideals in R containing I .

Theorem 8.3 (Hilbert’s Basis Theorem3). If R is noetherian, then R[x] is noetherian.

Corollary 8.4. If R is noetherian (for example, a field), then any algebra of finite type over
R is noetherian.

3David Hilbert, 1862–1943
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Proof of corollary. The ring R[x1, . . . , xn] = R[x1][x2] · · · [xn] is noetherian for R noetherian
by induction on n. An R-algebra of finite type is isomorphic to R[x1, . . . , xn]/I for some
ideal I .

This corollary gives us an important example of a noetherian ring: the polynomial
ring k[x1, . . . , xn] over a field k.

Proof of the Hilbert Basis Theorem. Let R be a noetherian ring. We’ll show that any ideal
I in R[x] is finitely generated as an ideal. For each j ∈N let I j be the set of elements a ∈ R
such that there is an element of I of the form ax j + [lower-degree terms]. (That is, I j is
the set of elements of R that appear as leading coefficients of degree- j members of I .)
Since I is an ideal in R[x], it is easy to check that each I j is an ideal in R. We have a chain
of ideals

I0 ⊆ I1 ⊆ I2 ⊆ ·· · ⊆ R,

since multiplying an element of I ⊆ R[x] by x gives an element of I . Because R is noethe-
rian this sequence of ideals terminates: there is N ∈N such that IN = IN+1 = ·· · . For each
j = 0, . . . , N choose finitely many generators for the ideal I j : I j = ( f j ,1, . . . , f j ,m j ) ⊆ R . Then
for each of these finitely many elements f j ,k in R we can choose an element g j ,k ∈ I of the
form

g j ,k = f j ,k x j + [lower-degree terms].

We claim I is generated by the finitely many elements g j ,k , 1 ≤ k ≤ m j , 0 ≤ l ≤ N . Let h be
an element of I . We want to show that h is an R[x]-linear combination of the g j ,k s. Using
induction on degh, we need only prove that we can subtract from h some R[x]-linear
combination of the g j ,k s to get something of degree less than degh.

If degh = d ≤ N , then we can subtract some linear combination of gd ,1, gd ,2, . . . from
h to get something of degree < d . If d = degh > N , then we can subtract from h the
product of xd−N with some R-linear combination of the gN ,i s to get something of degree
less than d , since in this case Id = IN = ( fN ,1, . . . , fN ,mN ). We conclude that I is finitely
generated.

Lemma 8.5. Let R be noetherian and S ⊆ R a multiplicatively closed subset of R. Then
the localised ring R[S−1] is noetherian.

Proof. Let π : R → R[S−1] be the natural ring homomorphism. Then for any ideal I ⊆
R[S−1], we have I = (p−1(I )) ·R[S−1]. (Indeed, if r

f ∈ I , then r
1 ∈ I , so r ∈π−1(I ). Therefore

every element of I is the product of an element of π−1(I ) and 1
s ∈ R[S−1].) So if I is any

ideal in R[S−1], then π−1(I ) ⊆ R is finitely generated; say π−1(I ) = (x1, . . . , xm) ⊆ R. Then I
is generated by the images x1, . . . , xm as an ideal of R[S−1].

2/11

Definition. Let R be a ring. An R-module M satisfies ACC on R-submodules if any se-
quence of R-submodules M1 ⊆ M2 ⊆ M3 ⊆ ·· · terminates.

Example. A ring R is noetherian if and only if R satisfies ACC on R-submodules.
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Lemma 8.6. Let

0 −→ A
α−→ B

β−→C −→ 0

be an exact sequence of R-modules. Then B satisfies ACC on R-submodules if and only if
both A and C do.

Proof. Exercise! Or see Atiyah–MacDonald, which offers (a condensed version of) the
following proof (6.5i):

An ascending chain of submodules in A or C gives rise to an ascending chain in B ,
hence terminates. This proves the ‘only if’ implication.

Let (Ln)n≥1 be an ascending chain of submodules in B . Then (α−1(Ln))n≥1 is an
ascending chain of submodules in A, and (β(Ln))n≥1 is an ascending chain of submodules
in C . Each of these chains terminates, so for sufficiently large n we have α−1(Ln) =
α−1(Ln+1) = ·· · and β(Ln) =β(Ln+1) = ·· · .

...

Corollary 8.7. Let R be a noetherian ring and M a finitely generated R-module. Then
every R-submodule of M is finitely generated as an R-module. Also, M satisfies ACC on
R-submodules.

Proof. We know R satisfies ACC for R-submodules. So by the lemma (8.6) the free module
R⊕n satisfies ACC on R-submodules for every n ∈N. By the lemma, any finitely generated
R-module also satisfies ACC for submodules, as it is a quotient module of R⊕n for some n.

This implies that any submodule N ⊆ M is finitely generated by a proof very similar to
the one we used for ideals. (Which theorem? Which proof?!)

Next we discuss why noetherian rings are useful geometrically.

8.1 Decomposition of irreducible closed subsets

Theorem 8.8. Let R be a noetherian ring. Then Spec(R) can be written as a finite union
of irreducible closed subsets:

Spec(R) = X1 ∪X2 ∪·· ·∪Xm ,

with no Xi contained in any X j for i 6= j . Moreover, this decomposition is unique up to
the order of X1, . . . , Xm .

The subsets Xi in the statement of the theorem are called the irreducible components
of X = Spec(R). Note that any closed subset of Spec(R) can be viewed (recall Theorem 1.9)
as Spec(R/I ) for some ideal I , so any closed subset of Spec(R) has a similar decomposition
with the same properties.

The idea here is that we’re (vaguely) generalising unique factorisation in Z: every ideal
is related to a finite list of primes. In the case R =Z the irreducible components of the
closed set {n = 0} = Spec(Z/n) ⊆ Spec(Z) (for n ∈ Zà {0}) are the sets Spec(Z/p) for the
prime divisors p of n.

Since the closed subsets of Spec(R) correspond to radical ideals in R , we can state the
theorem purely algebraicly:
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Corollary 8.9. Suppose R is noetherian and I is an ideal of R. Then the ideal rad I is a
finite intersection of prime ideals:

rad I = p1 ∩·· ·∩pm

for some m > 0 and some prime ideals pn , where pi 6= p j for i 6= j .

These ideals are exactly the minimal ideals that contain I . (cf. Example Sheet 1,
Question 12.)

Proof of Theorem 8.8. Let X = Spec(R). Since R is noetherian, R (in particular) satisfies
the ACC for radical ideals, so X satisfies the DCC for closed subsets: if we have a sequence
X ⊆ X1 ⊆ X2 ⊆ ·· · of closed subsets of X , then the sequence terminates.

Suppose X cannot be written as a finite union of irreducible closed subsets. Then
X 6=∅ (otherwise we’d be done with m = 0). Also X is not irreducible; otherwise we’d be
done with m = 1. So we can write X = Y1 ∪Z1 for some closed proper subsets Y1, Z1 of X .
At least one of Y1, Z1 cannot be written as a finite union of irreducible closed subsets; say
it’s Y1. Then Y1 6=∅ and Y1 is not irreducible, so we can write Y1 = Y2 ∪Z2 for some pair
Y2, Z2 of proper closed subsets of Y1. We can assume that Y2 is not a finite union of closed
irreducible subsets. Repeat to get a strictly decreasing sequence of closed subsets of X :

X ) Y1 ) Y2 ) · · · ,

a contradiction.
Proof of uniqueness of such a decomposition is left as an exercise.

This theorem gives a rough description of ideals and modules over a noetherian ring,
but there can be many ideals with the same radical.

Example. Let R =C[x, y] and let I be an ideal of R with rad I = (x, y). (Think of the ideal
(x, y) as the ideal of functions that vanish at 0 ∈C.) Equivalently, there is some N > 0 such
that

(x, y)N ⊆ I ⊆ (x, y).

(Recall that (x, y)N = (xN , xN−1 y, . . . , y N ).) An example of such an I is a monomial ideal
I = (xa1 yb1 , xa2 yb2 , . . . ). The monomial ideal (y2, x2 y, x4) is pictured below. The cells in
the grid represent members of a basis for C[x, y] as a C-vector space, and so the ideal is
the set of all C-linear combinations of monomials that appear above or to the right of the
ideal’s generators (in this case, y2, x2 y , and x4).

...

y3 ...
...

...

y2 x y2 x2 y2 x3 y2 · · ·
y x y x2 y x3 y · · ·
1 x x2 x3 x4 · · ·

There are many such examples of ideals with radical (x, y). This picture shows how to
produce infinitely many distinct examples, but one can easily write down ‘continuous
families’ of them.
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Lemma 8.10. Let R be a noetherian ring and I ⊆ R an ideal. Then for some N > 0 we have

(rad I )N ⊆ I ⊆ rad I .

Proof. We know rad I is finitely generated as an ideal; say rad(I ) = (x1, . . . , xm). Some
positive power of each xi lies in I . Since there are only finitely many xi , there is n > 0 such
that (x1)n ∈ I , . . . , (xm)n ∈ I . Notice that any product of at least mn +1 of the generators
x1, . . . , xm (allowing repetitions) is a multiple of (xi )n for some i . Therefore such a product
must belong to I , and we have (rad I )mn+1 ⊆ I .

Theorem 8.11. Let R be a noetherian ring and M a finitely generated R-module. Then
there exists a chain

0 = M0 ⊆ M1 ⊆ M2 ⊆ ·· · ⊆ Mr = M

of R-modules such that, for 1 ≤ i ≤ r , we have Mi /Mi+1
∼= R/pi for some prime ideal pi .

Remark. Such a ‘decomposition’ of M is far from unique. Even the set of primes pi that
occur is not uniquely determined by M .

Exercise. Give an example for R =Z and M a finitely generated Z-module of nonunique-
ness.

Exercise. Let M be a finitely generated module over a noetherian ring R . Show that in any
decomposition as in Theorem 8.11, the intersection p1 ∩·· ·∩pr is equal to rad(AnnR (M)).

The closed subset of Spec(R) defined by the ideal AnnR (M) is called the support of M .
The support of M is the set of prime ideals p ∈ Spec(R) such that Mp 6= 0. The module M
can be viewed as an (R/AnnR (M))-module, so we view M as ‘sitting on’ its support, the
closed subset Spec(R/AnnR (M)) of Spec(R).

4/11

Proof of Theorem 8.11. We will show that for any nonzero module M over a noetherian
ring, M contains a submodule isomorphic to R/p for some prime p⊂ R. Given that, the
theorem follows by the following argument: Let M be a finitely generated module. If
M = 0 we’re gone with r = 0. So suppose M 6= 0 and let M1

∼= R/p1 6= 0 for some prime
p1 ⊂ R. Look at M/M1. If this is 0, then we’re done with r = 1. Otherwise M/M1 contains
a submodule isomorphic to R/p2 for some prime p2 ⊂ R. Let M2 be the inverse image
of this submodule in M1. Repeat. The process stops after finitely many steps, since M
satisfies ACC for R-modules.

Now we’ll prove the claim: By Example Sheet 2, there is a nonzero element x of M
whose annihilator in R is maximal among annihilators of nonzero elements (since R is
noetherian). Let p= AnnR (x). We will show that p is prime. (Then R/p as a submodule,
R ·x ⊆ M .) The identity 1 does not belong to p, since x 6= 0. Suppose r, s ∈ R satisfy r s ∈ p
and s ∉ p. That is, we have r sx = 0 and sx 6= 0. Then p ⊆ AnnR (sx). By the maximality
property of p, we have p = AnnR (sx). But r ∈ AnnR (sx), so r ∈ p. This completes the
proof.

Definition. A finite A-algebra is an A-algebra that is finitely generated as an A-module.

Contrast: An A-algebra B is of finite type if B is finitely generated as an A-algebra.

Example. The polynomial ring k[x] is of finite type over k, but it is not finite over k.
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9 Homological algebra

Lang’s Algebra is a good reference for this topic. Note that most of the material for today’s
lecture also works for left modules over noncommutative rings.

A sequence of R-linear maps

· · ·Mi+1
di+1−→ Mi

di−→ Mi−1
di−1−→ ·· ·

is a chain complex (or just complex) if di di+1 = 0 for every i . Equivalently, im(di+1) ⊆
ker(di ) for every i . We define the homology groups of a chain complex (of R-modules) to
be the R-modules

Hi (M∗) := kerdi

im(di+1)
.

Thus the chain complex M∗ is an exact sequence if and only if its homology groups are all
0.

Let M∗ and N∗ be complexes of R-modules. A chain map (or map of chain complexes)
f : M∗ → N∗ is a collection of R-linear maps fi : Mi → Ni such that the diagram

· · · −−−−→ M2
d2−−−−→ M1

d1−−−−→ M0 −−−−→ ·· ·
f2

y f1

y f0

y
· · · −−−−→ N2

e2−−−−→ N1
e1−−−−→ N0 −−−−→ ·· ·

commutes.

Exercise. A chain map f : M∗ → N∗ determines an R-linear map f∗ : Hi (M∗) → Hi (N∗)
on homology groups. (Note Hi ( f ) is also used to denote f∗.)

Let f and g be chain maps M∗ → N∗. A chain homotopy F from f to g is a collection
of R-linear maps Fi : Mi → Ni+1 such that dF +F d = g − f as R-linear maps Mi → Ni for
every i ∈Z:

· · · M2 M1 M0 · · ·

· · · N2 N1 N0 · · ·

d d

g − f

d

F1 g − f

d

F2 g − f

d d d d

Exercise. Write f ∼ g if there is a chain homotopy from f to g . If f ∼ g : M∗ → N∗, then
f∗ = g∗ as R-linear maps Hi (M∗) → Hi (N∗) on homology.

Finally, a chain homotopy equivalence f : M∗ → N∗ is a chain map such that there is a
chain map g : N∗ → M∗ with f g ∼ 1N∗ and g f ∼ 1M∗ .

Exercise. If f : M∗
'−→ N∗ is a chain homotopy equivalence, then f∗ : Hi (M∗) → Hi (N∗)

is an isomorphism for every n ∈Z.

Definition. Let M be an R-module. A projective resolution of M is an exact sequence of
R-modules

· · · −→ P1 −→ P0 −→ M −→ 0(−→ 0 −→ 0 −→ ·· · )
with each Pi a projective R-module.
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Every R-module has a projective resolution, in fact a free resolution. Say I is a set
that generates M ; then P0 := R⊕I � M → 0 is exact. Choose P1 free that maps onto
ker(P0 → M), etc.

Examples. (1) The Z-module Z has the projective resolution

· · · −→ 0 −→ 0 −→Z
n−→Z−→ 0.

(2) The Z-module Z/n (for n 6= 0) has the projective resolution

· · · −→ 0 −→ 0 −→Z−→Z−→Z/n −→ 0.

More generally, for any commutative ring R and any non-zerodivisor f ∈ R, the
quotient R/( f ) as an R-module has the projective resolution

· · · −→ 0 −→ 0 −→ R
f−→ R −→ R/( f ) −→ 0.

To be precise, we say that the projective resolution of M is the chain complex

· · · −→ P2 −→ P1 −→ P0 −→ 0

(not including M). This is a chain complex P∗ with Pi projective and

Hi (P∗) ∼=
{

M if i = 0

0 if i 6= 0
.

Projective resolutions generalise the idea of generators and relations for a module. If
we have a projective resolution

· · · −→ P2 −→ P1 −→ P0 −→ M −→ 0,

then P0 represents the generators for M , P1 represents the relations, P2 represents rela-
tions between relations, etc.

Projective resolutions are far from unique, but they do have the following in common:

Theorem 9.1. Let M be an R-module. Then any two projective resolutions of M are
chain-homotopy-equivalent.

Proof. See Lang for the proof, or do it yourself. (Exercise!) The idea is to use the lifting
property of projective modules (Lemma 4.1) to define the homotopy equivalence.

9.1 Derived functors

A functor T : R-Mod → R-Mod is called additive if T ( f + g ) = T f +T g for every pair of
R-linear maps f , g : M → N .

Example. For a given R-module N , define

TN (M) := M ⊗R N .
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Then TN is an additive functor. By definition TN is exact if and only if N is a flat R-module.
An additive functor T : R-Mod → R-Mod is right exact if for every exact sequence

A → B →C → 0

of R-modules the sequence
T A → T B → TC → 0

is also exact.
For example, the functor −⊗R N = TN is right exact for every R-module N (Lemma

6.3).

Definition. Let T : R-Mod → R-Mod be a right exact functor. The derived functors
Ti : R-Mod → R-Mod for i ≥ 0 are defined in the following way: for an R-module M ,
let P∗ be a projective resolution of M . Then we define Ti (M) := Hi (T (P∗)). That is, look at
the sequence

· · · −→ T P2 −→ T P1 −→ T P0 −→ 0,

which is, by the functoriality of T , always a chain complex of R-modules (though not
necessarily exact).

Remark. It’s easy to show that T0(M) = T (M).
The R-modules Ti (M) are independent of choice of projective resolution P∗ because

any two projective resolutions of M are chain-homotopy-equivalent. We have P∗ 'Q∗, so
T (P∗) ' T (Q∗); therefore T (P∗) and T (Q∗) have the same homology groups.

Definition. For R-modules M and N , we write

TorR
i (M , N ) := (TN )i (M),

an R-module for every i ≥ 0.

We have
TorR

0 (M , N ) ∼= M ⊗R N .

(Think of Tor as describing how far N is from being flat.)
7/11

More concretely, we can define TorR
i (M , N ) for i ≥ 0 by choosing a projective resolution

· · · −→ P1 −→ P0 −→ M −→ 0.

We then look at the chain complex

· · · −→ P2 ⊗R N −→ P1 ⊗R N −→ P0 ⊗R N −→ 0. (?)

The Tor groups TorR
i (M , N ) are the homology groups of the complex (?).

Remark (Properties of Tor).

(1) TorR
0 (M , N ) ∼= M ⊗R N . To see this, use that ⊗R is right exact.
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(2) If M is projective, then we have

TorR
i (M , N ) =

{
M ⊗R N if i = 0

0 if i 6= 0
.

If N is flat, then

TorR
i (M , N ) =

{
M ⊗R N if i = 0

0 if i 6= 0
.

(3) Relation of Tor to torsion: Compute TorR
r (R/( f ), N ) with f ∈ R a non-zerodivisor as

follows: Use the projective resolution

0 −→ R −→ R −→ R/( f ) −→ 0.

So TorR∗ (R/( f ), N ) are the homology of the sequence

0 −→ N
f−→ N −→ 0.

That is,

TorR
i (R/( f ), N ) =


N / f N if i = 0

N [ f ] if i = 1

0 if i > 1

,

where N [ f ] = {
x ∈ N : f x = 0

}
is the f -torsion submodule.

The other fundamental example of a derived functor is Ext. Consider the (contravari-
ant) right exact functor

HN (M) = HomR (M , N ) : R-Mod → (R-Mod)op.

An R-linear map M1 → M2 gives an R-linear map HomR (M2, N ) → HomR (M1, N ). The de-
rived functors of HN are called Exti

R (M , N ), i ≥ 0. That is, let P∗ be a projective resolution
of M , and then Ext∗R (M , N ) are the homology groups of the sequence

0 −→ HomR (P0, N ) −→ HomR (P1, N ) −→ ·· · .

Example. Compute Exti
R (R/( f ), N ) with f a non-zerodivisor. Use the obvious projective

resolution of R/( f ) and apply HomR (−, N ) to get a chain complex

0 −→ HomR (R, N ) −→ HomR (R, N ) −→ 0 −→ ·· · .

But we have an isomorphism HomR (R, N ) ∼= N , and the map N ∼= HomR (R, N ) −→ HomR (R, N ) ∼=
N is just the multiplication-by- f map, so we can read off the homology:

Exti
R (R/( f ), N ) ∼=


N [ f ] if i = 0

N / f N if i = 1

0 if i > 1

.

(Notice that we always have Ext0
R (M , N ) ∼= HomR (M , N ).)
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Remark. Ext1
R (M , N ) can be interpreted as the set of isomorphism classes of extensions

of R-modules:
0 −→ N −→ E −→ M −→ 0.

The ‘trivial’ extension E = M ⊕N corresponds to 0 ∈ Ext1
R (M , N ).

Lemma 9.2 (Snake lemma, Example sheet 2). If we have a commutative diagram of
R-modules

0 −−−−→ A1 −−−−→ A2 −−−−→ A3 −−−−→ 0

f

y g
y h

y
0 −−−−→ B1 −−−−→ B2 −−−−→ B3 −−−−→ 0

with exact rows, then we have a canonical exact sequence

0 −→ ker f −→ ker g −→ kerh −→ coker f −→ coker g −→ cokerh −→ 0.

(The interesting map here is, of course, the map kerh → coker f .)

This implies, with more diagram-chasing, the following theorem:

Theorem 9.3. Given a short exact sequence of chain complexes of R-modules:

...
...

...y y y
0 −−−−→ Ai+1 −−−−→ Bi+1 −−−−→ Ci+1 −−−−→ 0y y y
0 −−−−→ Ai −−−−→ Bi −−−−→ Ci −−−−→ 0y y y
0 −−−−→ Ai−1 −−−−→ Bi−1 −−−−→ Ci−1 −−−−→ 0y y y

...
...

...

(a commutative diagram, with chain complexes in columns and rows exact), there is a
long exact sequence of R-modules in homology:

· · · −→ Hi (A) −→ Hi (B) −→ Hi (C )
∂−→ Hi−1(A) −→ ·· ·

Refer to Lang’s Algebra for a proof. Notice again that the ‘boundary map’ ∂ : Hi (C ) →
Hi−1(A) is the interesting one.

Corollary 9.4 (Long exact sequence for Tor in the second variable). Let M be an R-module,
and let 0 → A → B →C → 0 be a short exact sequence of R-modules. Then we have a long
exact sequence:

· · · −→ TorR
i (M , A) −→ TorR

i (M ,B) −→ TorR
i (M ,C ) −→ TorR

i−1(M , A) −→ ·· ·
−→ TorR

2 (M ,C ) −→ TorR
1 (M , A) −→ TorR

1 (M ,B) −→ TorR
1 (M , A)

−→ M ⊗R A −→ M ⊗R B −→ M ⊗R C −→ 0.
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Proof. Let P∗ be a projective resolution of M . Then we have a short exact sequence of
chain complexes:

...
...

...y y y
0 −−−−→ Pi+1 ⊗R A −−−−→ Pi+1 ⊗R B −−−−→ Pi+1 ⊗R C −−−−→ 0y y y
0 −−−−→ Pi ⊗R A −−−−→ Pi ⊗R B −−−−→ Pi ⊗R C −−−−→ 0y y y

...
...

...

It’s easy to check commutativity (Exercise!), and it’s obvious that the columns are chain
complexes. The rows are exact because projective modules are flat (Ex Sheet 1). By the
theorem (9.3), we get a long exact sequence of homology groups.

Theorem 9.5. Let M and N be modules over R. Then the R-modules TorR
i (M , N ) can be

computed by a projective resolution of N , or more generally by a flat resolution of N . That
is, given any flat resolution of N :

· · · −→ F2 −→ F1 −→ F0 −→ N −→ 0 (Fi flat),

we have that the modules TorR
i (M , N ) are the homology groups of the chain complex

· · · −→ M ⊗R F1 −→ M ⊗R F0 −→ 0.

Proof. Divide the exact sequence · · · −→ F1 −→ F0 −→ N −→ 0 into short exact sequences:

0 −→ I j+1 −→ F j −→ I j −→ 0

where I j := im(F j → F j−1) for j > 0 and I0 := N . By 9.4 we get an exact sequence

TorR
i+1(M ,F j ) −→ TorR

i+1(M , I j ) −→ TorR
i (M , I j+1) −→ TorR

i (M ,F j ). (†)

But TorR
i+1(M ,F j ) = TorR

i (M ,F j ) = 0 for i > 0, so (†) gives isomorphisms

TorR
j (M , N ) ∼= TorR

j−1(M , I1) ∼= ·· · ∼= TorR
1 (M , I j−1) ∼= ker(M ⊗ I j → M ⊗F j−1).

Also, since ⊗R is right exact and the sequence F j+1 → F j → I j → 0 is exact, the sequence

M ⊗R F j+1 −→ M ⊗R F j −→ M ⊗R I j −→ 0

is exact. So M ⊗R I j
∼= coker(M ⊗R F j+1 → M ⊗R F j ). Therefore TorR

j (M , N ) ∼= H j (M ⊗R

F j+1 → M ⊗R F j → M ⊗R F j−1).

From this theorem, we conclude that we can compute TorR
j (M , N ) using a projective

resolution of M or of N , and we get the same answer. Since M ⊗R N ∼= N ⊗R M , it follows
that TorR

i (M , N ) ∼= TorR
i (N , M) (though this isn’t obvious from the definition of Tor). In

fact, you could also use a flat resolution of M , not necessarily a projective resolution, and
get the same groups. It follows also that we have a long exact sequence for Tor in the first
variable.

9/11
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10 Integral Extensions

Definition. Let B be a ring and A be a subring of B . An element x ∈ B is integral over A if
there are elements a0, . . . , an−1 ∈ A such that

xn +an−1xn−1 +·· ·+a1x +a0 = 0,

that is, if x is a root of a monic polynomial with coefficients in A.

Example. Every x ∈ A is integral over A.

We highlight an important special case: suppose K /Q is a finite extension of fields.
Define the set (ring, as we will see shortly) OK of algebraic integers in K as follows:

OK = {
x ∈ K : x is integral over Z

}
.

Exercise. Show that OQ =Z. (To get started, show that 1
2 ∉OQ.)

Lemma 10.1. Suppose A is a subring of B . We (unfortunately) write A[x] for the subring
of B generated by A and the element x. The following are equivalent:

(1) x ∈ B is integral over A;

(2) the subring A[x] of B is a finitely generated A-module;

(3) the subring A[x] of B is contained in a subring C ⊆ B that is finitely generated as an
A-module;

(4) there exists a faithful4 module M over the ring A[x] that is finitely generated as an
A-module.

Proof. The implication (1)⇒(2) is clear: if x is integral over A, then we have

x ∈ A ·1+ A · x +·· ·+ A · xn−1.

Now by induction on m, the element xn+m is also an A-linear combination of the elements
1, x, . . . , xn−1 for every m ≥ 0.

For the second implication, (2)⇒(3), just take C = A[x].
The third implication (3)⇒(4) is also easy: Take M = C , viewed as an A[x]-module.

Observe M is finitely generated by assumption and faithful since A[x] ⊆C .
The heart of the proof is the final implication, (4)⇒(1): Let m1, . . . ,mr generate M as

an A-module. Then there are elements ai j ∈ A such that

xmi =
n∑

j=1
ai j m j .

Consider the matrix X := xI −(ai j ). If X = (yi j ) then
∑

yi j m j = 0. Now multiply by adj(X ).
Recall that for any square matrix, adj(X )X = (det X ) · I , so we get (det X ) ·mi = 0 for every
i ; that is, (det X ) ·M = 0. But det X belongs to A[x], which (by assumption) acts faithfully
on M . So it must be that det X = 0. But det X is a monic polynomial in x, with coefficients
in A, so x is integral over A.

4I don’t think we ever defined a faithful R-module. . . An R-module is faithful if AnnR (M) = 0. (Atiyah–
MacDonald 20)
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From just this one technical lemma we can deduce a surprising number of useful
facts.

Recall that an A-algebra B is finite over A (or a finite A-algebra) if B is finitely generated
as an A-module, whereas B is of finite type over A if B is finitely generated as an A-algebra.
Accordingly, a morphism f : X → Y of affine schemes is finite if OX is finite over OY and
of finite type if OX is of finite type over OY . (Recall the definition of the ring OX of regular
functions on X .)

Lemma 10.2. Let A ⊆ B ⊆C be a chain of subrings. If B is finite over A and C is finite over
B , then C is finite over A.

Proof. Let b1, . . . ,bn generate B as an A-module and c1, . . . ,cr generate C as a B-module.
Check (Exercise!) that all elements bi c j generate C as an A-module.

Corollary 10.3. Let B be a ring and A a subring. Suppose that each of the elements
x1, . . . , xn ∈ B is integral over A. Then the subring A[x1, . . . , xn] of B is finitely generated as
an A-module.

Proof. Induct on n. Induction has R := A[x1, . . . , xn−1] finitely generated as an A-module.
By assumption xn is integral over A, so integral over R. Apply Lemmas 10.1 and 10.2 to
conclude that A[x1, . . . , xn] is finitely generated as an A-module.

Corollary 10.4. Let A be a subring of a ring B . Let C be defined by

C = {
x ∈ B : x is integral over A

}
.

Then C is a subring of B (and, obviously, A ⊆C ⊆ B).

Proof. Since A ⊆C , we have 0,1 ∈C . We need to show that for every pair x, y of elements
of C , the elements x y , x + y , and −x also belong to C . But by the previous corollary,
the subring A[x, y] generated by A, x, and y is a finitely generated A-module, so all its
elements are integral over A. In particular, the elements x y , x + y , and −x are integral
over A.

It seems we’ve cheated somewhere. We shouldn’t have been able, in the proof of
Corollary 10.4 that C was a ring without somehow exhibiting monic polynomials over A
of which x y and x + y are roots (cf. the exercise below). But somehow Lemma 10.1 took
care of all the combinatorial work we had to do.

Exercise. Suppose x satisfies the monic polynomial f (with coefficients from A) and
y satisfies the monic polynomial g . Can you find monic polynomials satisfied by x + y
and x y defined in terms of the coefficients of f and g ? (Try f , g quadratic first, as a nice
special case.)

Definition. The set
{

x ∈ B : x is integral over A
}

is called the integral closure of A in B . If
the integral closure of A is all of B , we say B is integral over A; if the integral closure of A is
A, we say A is integrally closed in B . An integral domain A is called normal (or integrally
closed) if it is integrally closed in its field of fractions.
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Example. Z is normal by the first exercise of this section. A problem on Example Sheet 2
(?) asks to prove that every UFD is normal. So k[x1, . . . , xn] is normal, and Ok is normal (as
we’ll see).

Definition. Let f : A → B be a ring homomorphism. We say B is integral over A if B is
integral over f (A).

We could rephrase Corollary 10.3 to say that ‘B is finite over A iff B is of finite type and
integral over A’; more concisely, ‘finite = finite type + integral’.

Corollary 10.5. Let A ⊆ B ⊆ C be a chain of subrings. If B is integral over A and C is
integral over B , then C is integral over A.

Proof. If x ∈ C , then there are elements bi such that xn +bn−1xn−1 + ·· · +b0 = 0. But
A[b0, . . . ,bn−1] is finitely generated as an A-module, as each bi is integral over A. Thus x
is integral over R := A[b0, . . . ,bn−1], so the subring A[b0, . . . ,bn−1, x] is finite over R (hence
over A). Therefore x is integral over A.

Corollary 10.6. Let A be a subring of a ring B , and let C be the integral closure of A in B .
Then C is integrally closed in B .

Proof. If x ∈ B is integral over C , then x is integral over A (by the previous corollary, 10.5),
so x ∈C .

Exercise. (‘Integrality behaves well with respect to quotients and localisations’) Suppose
A is a subring of B and suppose B is integral over A. Show:

(1) if J is an ideal in B and I = J ∩ A, then the quotient B/J is integral over the quotient
A/I ;

(2) if S is a multiplicatively closed subset of A, then the localisation B [S−1] is integral
over the localisation A[S−1].

Lemma 10.7. Let A be a subring of a ring B , and let C be the integral closure of A in B . Let
S ⊂ A be multiplicatively closed. Then C [S−1] is the integral closure of A[S−1] in B [S−1].

Proof. By the exercise above, C [S−1] is integral over A[S−1], so we need only show that
every element of B [S−1] that is integral over A[S−1] belongs to C [S−1].

If b/s ∈ B [S−1] is integral over A[S−1] then we have an equation

(b/s)n +an−1/sn−1(b/s)n−1 +·· ·+a0/s0 = 0

(in B [S−1]) for some elements ai ∈ A, si ∈ S. Clear denominators: put t = s0 . . . sn−1 and
multiply by (st )n , getting

(bt )n +en−1(bt )n−1 +·· ·+e0 = 0

(in B [S−1]) for some ei ∈ A. Multiply by some u ∈ S to get the equation

u(bt )n +uen−1(bt )n−1 +·· ·+ue0 = 0

in B , by definition of B [S−1]. Multiply once more by un−1 to see that the element btu ∈ B
is integral over A. So btu ∈C , whence b/s = (btu)/(stu) belongs to C [S−1].
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Hence normality is a local property:

Lemma 10.8. Let A be an integral domain. The following are equivalent:

(1) A is normal;

(2) Ap is normal for every prime p⊂ A;

(3) Am is normal for every maximal ideal m⊂ A.

11/11
Correction to Example Sheet 3: for #9, assume that A is a domain of finite type over a

field.
Next we discuss some basic properties of Ext.
Unlike Tor, Exti

R (M , N ) is in general not related to Exti
R (N , M) because there is no

relation between HomR (M , N ) and HomR (N , M). Nonetheless, Ext can be computed by
either a projective resolution of M or an injective resolution of N :

0 −→ N −→ I0 −→ Ii −→ ·· · .

Definition. An R-module is injective iff for every injective R-linear map M ,→ N , every
R-linear map M → I extends to an R-linear map N → I .

(See Lang’s Algebra for a discussion of injective modules.)
Also, we have a long exact sequence for Ext in the first or second variable: if M is an

R-module and 0 → A → B →C → 0 is a short exact sequence of R-modules, then we can
define canonical long exact sequences

0 −→ HomR (M , A) −→ HomR (M ,B) −→ HomR (M ,C )

−→ Ext1
R (M , A) −→ Ext2

R (M ,B) −→ ·· ·

and

0 −→ HomR (C , M) −→ HomR (B , M) −→ HomR (A, M)

−→ Ext1
R (C , M) −→ Ext2

R (B , M) −→ ·· ·

Now the application of Tor promised earlier (Theorem 6.4).

Lemma 10.9. Let M be an R-module. Then the following are equivalent:

(1) M is a flat R-module;

(2) for any injective R-linear map A → B , the map M ⊗R A → M ⊗R B is injective;

(3) for any ideal I ⊆ R, the induced map M ⊗R I → M ⊗R R = M is injective.

Proof. We showed that (1) and (2) are equivalent and that (2) implies (3) in the proof of
Theorem 6.4. We now show that (3) implies (1).

For any ideal I ⊆ R, we have a long exact sequence

· · · −→ TorR
1 (M ,R) −→ TorR

1 (M ,R/I ) −→ M ⊗R I −→ M ⊗R I −→ ·· · .
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But TorR
1 (M ,R) is zero since R is R-flat, and the map M ⊗R I → M ⊗R I is an injection by

assumption. Therefore TorR
1 (M ,R/I ) = 0 for all ideals I ⊆ R.

Next let N be any finitely generated R-module. Say

N = Rx1 +·· ·+Rxn

for some elements x1, . . . , xn ∈ N . Then we can consider the submodules Ni := Rx1 +
·· ·Rxi ⊆ N for 1 ≤ i ≤ n. We have containments

0 ⊆ N1 ⊆ ·· · ⊆ Nm = N ,

and each Ni /Ni−1 is generated by one element so is isomorphic to R/I for some I ⊆ R . By
(induction and) the long exact sequence for Tor in the second variable, TorR

1 (M , N ) = 0 for
every finitely generated module N .

Finally, let N be any R-module. Then N is the direct limit of its finitely generated
R-submodules (which always form a directed set). But Tor commutes with direct limits in
each variable (cf. Example Sheet 2). So TorR

1 (M , N ) = 0 for any R-module N .
Let A → B be any injection of R-modules. Then we have a short exact sequence

0 −→ A −→ B −→ B/A −→ 0

and hence a long exact sequence

· · · −→ 0 = TorR
1 (M ,B/A) −→ M ⊗R A −→ M ⊗R B −→ ·· · .

That is, the map M ⊗R A → M ⊗R B is injective, so M is flat.

Back to integral extensions:
Recall that we proved (Lemma 10.7) that the integral closure can be computed locally.

Therefore normality is a local property:

Theorem 10.10. Let R be a domain. The following are equivalent:

(1) R is normal;

(2) Rp is normal for every prime ideal p⊂ R;

(3) Rm is normal for every maximal ideal m⊂ R.

Proof. Note that the rings Rp, Rm, and R are all domains with the same fraction field:
R ⊂ Rp ⊆ Frac(R) = K . Let C be the integral closure of R in K . Let f : R ,→ C be the
inclusion; then R is normal if and only if f is surjective. By the locality of the integral
closure (Lemma 10.7), Rp is normal if and only if the induced map fp : Rp →Cp is surjective.
But the surjectivity of an R-linear map is a local property (at prime or maximal ideals). So
f is surjective if and only if fp is surjective, if and only if m is surjective.

Geometrically, a ring is normal if and only if Spec(R) is ‘not too singular’. In particular,
a normal affine variety has a singular set of codimension ≥ 2.

insert pictures here
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Let f be the function that maps the affine line A1
k onto the cusp {x2 = y3} ⊂ A2

k . Here f is
a finite morphism, and Frac(R) ∼= k(t), so Spec(R) is not normal. (Note that {x2 = y3} is
not normal.) We have R = k[x, y]/(x2 − y3) ,→ k[t ], x 7→ t 3, y 7→ t 2. Indeed the image of R
in k[t ] is the subring k{1, t 2, t 3, . . . }. Clearly k[t ] is generated by 1 and t as an R-module,
so k[t ] is finite over R.

Example. For any field k, the map A1
k

f−→ A1
k , x 7→ x2 is finite. Indeed, this map induces

the map k[y] → k[x], y 7→ x2. Here k[x] is generated by 1 and x as a module over the
subring k[y] = k{1, x2, x4, x6, . . . } ⊂ k[x]. So f is a finite morphism.

Lemma 10.11. Suppose the ring B is integral over its subring A and that A is a domain.
Let q⊂ B be prime, and put p= qc = q∩ A. (Notice that p is a prime ideal in A.) Then q is
maximal in B if and only if p is maximal in A.

For affine varieties X and Y over a field k, a morphism X → Y has O (Y ) → O (X )
injective if and only if f is dominant: f (X ) is dense in Y . So the lemma has the following
geometric consequence: if f : X → Y is a finite dominant morphism of f -varieties5, then
a point p in X is closed if and only if f (p) in Y is closed.

Proof. By the exercise following Corollary 10.6, B/q is integral over A/p⊆ B/q. Replace A
and B by A/p and B/q, respectively. Thus we have to show that if A ⊆ B are domains with
B integral over A, then A is a field if and only if B is a field.

Suppose A is a field. Let y ∈ B be nonzero. Then we can write

0 = yn +an−1 yn−1 +·· ·+a0 ∈ B

for some elements ai ∈ A. Choose such an equation with n minimal. Then a0 6= 0 in A,
since B is a domain. We have

y(yn−1 +an−1 yn−2 +·· ·+a1) =−a0 6= 0,

so y is a unit (as A is a field).
Conversely, suppose B is a field. Let u be a nonzero element of A. Then 1

u ∈ B , so 1
u is

integral over A. That is, there are elements ai ∈ A such that

0 = ( 1
u )n +an−1( 1

u )n−1 +·· ·+a0 = 0

in B . Multiply by un−1 to get the equation

0 = 1
u +an−1 +an−2u +·· ·+a0un−1

in B . But the sum an−1 + an−2u + ·· ·+ a0un−1 belongs to A, so 1
u ∈ A. Therefore A is a

field.

14/11

5Surely he meant k-varieties here. . .
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Corollary 10.12. Suppose B is integral over the subring A ⊆ B . Let q and q′ be prime
ideals in B such that q ⊆ q ′ and their contractions in A are equal:

q∩ A = qc = (q′)c = q′∩ A.

Then q= q′.

Geometrically, this corollary says that, if some irreducible closed subset of Spec(B)
is contained in another irreducible closed subset of Spec(B), then a finite morphism
doesn’t map the two irreducible closed subsets onto the same irreducible closed subset of
Spec(A).

Proof. Let p= qc (= (q′)c ). By Lemma 10.7, the localisation Bp is integral over the locali-
sation Ap. (Here Bp = B [(A àp)−1] need not be a local ring.) Notice that Ap ⊆ Bp, since
localisation (an exact functor) preserves injections (Theorem 7.6). Let m = pAp, the
(unique) maximal ideal in Ap. And set n= qBp ⊆ Bp and n′ = q′Bp ⊆ Bp. We will show that
n⊆ n′ and nc = (n′)c =m⊂ Ap.

We want to show that qBp∩ Ap = pAp, that is that the map

Ap/pAp −→ Bp/qBp

is injective. We know that the map A/p ,→ B/q is an injection. Since localisation is
an exact functor on A-modules, it follows that the map (A/p)p ,→ (B/q)p is an A-linear
injection. But also, localising commutes with taking quotient rings (Exercise! (R/I )[S−1] =
R[S−1]/I ·R[S−1] for a multiplicatively closed subset S ⊆ R .), so we’ve proved that the map
Ap/pAp → Bp/qBp is injective.

We know that n and n′ are prime ideals in Bp, so since nc =m in Ap and the ring Bp

is integral over Ap, we’ve shown that n and n′ are maximal ideals in Bp. Since n ⊆ n′, it
must be that n= n′. Using the one-to-one correspondence between prime ideals in Bp

and primes in B which do not meet Aàp, we see that q= q′ in B .

Theorem 10.13. Let A be a subring of a ring B , and suppose B is integral over A. Suppose
also that p is a prime ideal in A. Then there is a prime ideal q⊆ B with q∩ A = p.

Geometrically, this theorem claims that a finite dominant (the image is dense in the
target) morphism of varieties over k is surjective. As a non-example, consider the (non-
surjective) inclusion A1

k à {0} ,→ A1
k induced by the inclusion k[x] ,→ k[x, x−1]. The map

of rings is not finite, and the morphism A1
k à {0} ,→ A1

k is not a finite morphism.

Proof. We know that the localisation Bp is integral over Ap. Since localisation preserves
injections, the following diagram commutes, and its rows are injections:

A B

Ap Bp

α β

(∗)

Here Ap is local, so nonzero. Therefore Bp is nonzero, and so there is a maximal ideal
n in Bp. Then m := n∩ Ap is maximal in Ap by Lemma 10.11. Therefore m is the unique
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maximal ideal in Ap, so m= pAp. Letting q= β−1(n), we see that q is a prime ideal in B ,
and we conclude that q∩ A = p by the commutativity of the diagram (∗).

11 Noether normalisation and Hilbert’s Nullstellensatz

Lemma 11.1 (Preparation lemma). Let k be a field and f a nonzero element of the
polynomial ring k[x1, . . . , xn]. Then there is an isomorphism

k[x1, . . . , xn]
∼−→ k[y1, . . . , yn]

that sends f to the product of a nonzero constant in k and a polynomial which is monic
in yn . That is,

f = ayn
d +

d−1∑
i=0

ai (y1, . . . , yn−1)yn
i

for some a ∈ k.

Proof. Let f =∑
aI x I , where I = (i1, . . . , in) ∈Nn and x I := x1

i1 · · ·xn
in . Let (i1, . . . , in) ∈Nn

be the element with aI 6= 0 and with i1 maximal, and i2 maximal among terms with that
value of x1, and so on. Choose integers m1 À m2 À···À mn−1 > 1. Then

f (y1 + yn
m1 , . . . , yn−1 + yn

mn−1 , yn) =
ai1...in yn

m1i1+···+mn−1in−1+in + terms of lower total degree in y1, . . . , yn

This polynomial is the product of the nonzero constant ai1 · · ·ain ∈ k∗ and a polynomial
monic in yn . So the problem is solved by the isomorphism

x1 7→ (y1 + yn
m1 ), . . . , xn−1 7→ (yn−1 + yn

mn−1 ), xn 7→ yn .

This defines an isomorphism of k-algebras; indeed, its inverse is given by

y1 7→ (x1 −xn
m1 ), . . . , yn−1 7→ (xn−1 −xn

mn−1 ), yn 7→ xn .

Lemma 11.2 (Noether normalisation lemma). Let k be a field and let R be a nonzero
k-algebra of finite type. Then there is n ∈N and an inclusion k[x1, . . . , xn] ,→ R such that
R is finite over k[x1, . . . , xn].

A geometric example: Consider the variety {x y = 1} in the affine plane A2
k , and think

of the picture for k =R.
insert picture here

The morphism given by projecting the variety {x y = 1} straight down onto the affine
line A1

k cannot be finite, since it isn’t surjective (nothing is mapped to 0). But there are
finite morphisms of {x y = 1} onto the affine line A1

k ; you just need to ‘rotate a bit’ for the
projection to be finite.
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Proof. Let k[x1, . . . , xn] → R be a surjective homomorphism of k-algebras with kernel I .
If I = 0, we’re done. Otherwise we can pick a nonzero element f ∈ I . By the Preparation
Lemma 11.1, after changing (if necessary) our choice of algebra generators for R, we can
assume that f is the product of an element of k∗ and a yn-monic polynomial. Multiplying
f by an element of k∗, we can assume that f ∈ I is yn-monic. So we have a relation

xN
d +

d−1∑
i=0

fi (x1, . . . , xN−1)xN
i = 0

in R which shows that xN is integral over the subring S := im(k[x1, . . . , xn] → R). In fact, R
is finite over S. By induction on N , S is finite over some polynomial subring. So R is finite
over that polynomial subring.

Corollary 11.3 (Hilbert’s Nullstellensatz, first weak version). Let R be an algebra of finite
type over a field k. If R is a field, then R is finite over k.

Proof. We know by Noether normalisation 11.2 that R is finite over some subalgebra
k[x1, . . . , xn] ⊆ R.6 If n = 0, we’re done, so suppose n ≥ 1. Then since R is a field and
x1 6= 0 in R, there is an inverse 1/x1 in R for x1. So 1/x1 is integral over k[x1, . . . , xn], but
R contains the rational function field k(x1, . . . , xn), and 1/x1 ∈ k(x1, . . . , xn) is not integral
over k[x1, . . . , xn] (as you can easily check). This is a contradiction, so n = 0.

Theorem 11.4 (Hilbert Nullstellensatz, second weak version). Let f1, . . . , fr be polynomials
in k[x1, . . . , xn] over an algebraicly closed field k. Then either there are polynomials
g1, . . . , gr such that

f1g1 +·· ·+ fr gr = 1,

or there is a point (a1, . . . , an) ∈ kn at which all the fi are 0.

Remark. Notice first that both possibilities in the theorem cannot simultaneously hold.
Also, the theorem is totally false for k not algebraicly closed: e.g., the polynomial x2+1

in R[x] has no roots in R, but there is no g (x) with g (x)(x2 +1) = 1.

Proof. Let R be the quotient ring k[x1, . . . , xn]/( f1, . . . , fr ). If the first conclusion is false,
then ( f1, . . . , fr ) 6= k[x1, . . . , xn], so R 6= 0 and R contains a maximal ideal m. Then R/m is
a field of finite type over k, so by the previous result 11.3, R/m is finite over k. Since k is
algebraicly closed and the only finite extension of an algebraicly closed field is the field
itself, it must be that R/m= k. We have a homomorphism of k-algebras

k[x1, . . . , xn]�R�R/m= k.

Let a1, . . . , an ∈ k be the images of the elements x1, . . . , xn . Clearly f1, . . . , fr map to 0 in k;
that is, fi (a1, . . . , an) = 0 for every i .

16/11

Definition. The Jacobson radical of a ring R is the intersection of all maximal ideals in R.

6Note that here k[x1, . . . , xn ] means the polynomial ring, not the smallest subring containing k and some
elements xi .
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Recall that, in any ring, the nilradical is the intersection of all prime ideals (Theorem
1.6). In general, the nilradical won’t be the Jacobson radical, but that does turn out to be
the case for one class of rings.

Lemma 11.5. The Jacobson radical of an algebra of finite type over a field is the nilradical.

In particular, a local ring typically won’t be of finite type over a field.

Proof. Let R be an algebra of finite type over a field k. We have to show that if an element
f ∈ R belongs to all maximal ideals of R then f belongs to all prime ideals. We can just
replace R by R/p for any prime ideal p⊂ R, so it suffices to show that, if R is a domain of
finite type over a field, k and f ∈ R belongs to all maximal ideals, then f = 0. Suppose this
is the case, but f 6= 0. Then R[1/ f ] is also a domain of finite type over k, so R[1/ f ] has a
maximal ideal m. Notice that R[1/ f ]/m is a field of finite type over k, so R[1/ f ]/m is finite
over k by the first weak version of the Nullstellensatz (Theorem 11.3). Put

n= ker(R ,→ R[1/ f ]�R[1/ f ]/m).

The map R/n→ R[1/ f ]/m is an injection, so R/n is a k-subspace of the finite-dimensional
k-vector-space R[1/ f ]/m. Therefore R/n is finite over k. Since R/n is a domain of finite
type over a field (clearly n is prime in R), it must be a field (see Example Sheet 1). So n is a
maximal ideal in R ; but f ∉ n since f maps to a unit in R[1/ f ], so not to 0 in R[1/ f ]/m.

Theorem 11.6 (Hilbert Nullstellensatz, strong form). For an ideal I in a polynomial ring
k[x1, . . . , xn] with k algebraicly closed, define

Z (I ) := {
(a1, . . . , an) ∈ kn : f (a1, . . . , an) = 0 ∀ f ∈ I

}
.

Then the ideal of polynomials that vanish on Z (I ) ⊆ kn is the ideal rad(I ).

This fails badly for k not algebraicly closed; e.g., I = (x2 +1) in R[x].

Proof. Let J be the ideal of polynomials that vanish on Z (I ). Clearly I ⊆ J , so rad(I ) ⊆ J .
(If f ∈ k[x1, . . . , xn] has, for some r ≥ 1, f r vanishes on Z (I ) ⊆ kn , then f vanishes on Z (I ).)
We want to show that rad(I ) = J . Let R = k[x1, . . . , xn]/rad(I ). Then R is a k-algebra of
finite type, so by Lemma 11.5 its Jacobson radical is its nilradical, which is 0. Let f be a
polynomial not in rad(I ); we want to show that f ∉ J . Then f is a nonzero element of R , so
there is some maximal ideal m⊂ R with f ∉m. The weak Nullstellensatz 11.4 implies that
the maximal ideals in k[x1, . . . , xn] (with k algebraicly closed) correspond to the elements
of kn : the point (a1, . . . , an) ∈ kn corresponds to the maximal ideal (x1−a1, . . . , xn −an). So
m corresponds to a point (a1, . . . , an) ∈ kn with f (a1, . . . , an) 6= 0 and (a1, . . . , an) ∈ Z (I ).

Summary of Nullstellensatz.

(1) For k algebraicly closed, the set of closed points in An
k is kn .

(2) For any field k, all points in An
k are in one-to-one correspondence with irreducible

closed subsets of Maxk[x1, . . . , xn].
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12 Artinian rings

Recall that a ring is artinian if it satisfies the descending chain condition on ideals. Ar-
tinian rings are generally uncomplicated, so here we can give a fairly complete description
of them.

Lemma 12.1. In any artinian ring, every prime ideal is maximal.

Proof. Let p be a prime ideal in an artinian ring R. Then R/p is an artinian domain. Let x
be a nonzero element in R/p. The sequence

(x) ⊇ (x2) ⊇ (x3) ⊇ ·· ·
terminates; i.e., there is n > 0 such that (xn) = (xn+1). So there is an element a ∈ R/p
such that xn+1a = xn . Here xn 6= 0 since x 6= 0 and R/p is a domain, so xa = 1, as R/p is a
domain. Therefore x is a unit in R/p. We conclude that R/p is a field.

The geometric interpretation of this lemma is that in the spectrum of an artinian ring,
points are closed.

Lemma 12.2. An artinian ring has only finitely many maximal ideals.

Proof. Let R be an artinian ring, and suppose there are infinitely many maximal ideals.
Choose a sequence m1,m2, . . . of distinct maximal ideals. The sequence

m1 ⊇m1 ∩m2 ⊇m1 ∩m2 ∩m3 ⊇ ·· ·
terminates: there is n > 0 such that m1 ∩·· ·∩mn =m1 ∩·· ·∩mn+1. That is,

m1 ∩·· ·∩mn ⊆mn+1.

Recall that if I ∩ J ⊆ p with p prime, then I ⊆ p or J ⊆ p. (See the proof of Theorem 1.5, item
(3).) Sincemn+1 is prime,mn+1 must contain one ofm1,m2, . . . ,mn . This is a contradiction,
as we assumed the mi were distinct.

Lemma 12.3. In an artinian ring R, the nilradical is nilpotent. That is, rad(0)N = 0 for
some N .

Proof. The sequence
rad(0) ⊇ rad(0)2 ⊇ ·· ·

must terminate, so there is a positive integer N with rad(0)N = rad(0)N+1 = ·· · . Let
I = rad(0)N and suppose that I 6= 0. Consider the set Σ of all ideals J such that I J = 0,
partially ordered by ⊆. Clearly Σ 6=∅, because (1) ∈Σ. Since R is artinian, the set Σ must
have a minimal element J . (In fact, every nonempty set of ideals in an artinian ring must
have a minimal element.) Since I J 6= 0, there is x ∈ J such that xI 6= 0. Then (x) ∈Σ, and
(x) ⊆ J , so the minimality of J guarantees (x) = J . We have (xI )I = xI 2 = xI 6= 0, so the
ideal xI also belongs to Σ. Since xI ⊆ (x), the minimality of (x) = J guarantees xI = (x).
That is, we can write x = x y for some element y ∈ I . So we have equations

x = x y = x y2 = ·· · .

But y belongs to I = rad(0)N , so y is nilpotent. But then x = 0, a contradiction.
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Definition. In any ring a chain of prime ideals of length r is a chain of the form

p0 ( p1 ( · · ·( pr

for prime ideals pi . The (Krull) dimension of a ring is the supremum of the lengths of all
chains of prime ideals.7 (Thus dim(R) for R 6= 0 is a natural number or ∞.)

Geometrically, we say the dimension of the affine scheme X is the supremum of the
lengths of all chains of irreducible closed subsets.

Example. A field has dimension 0.
The ring Z has dimension 1: 0 ⊆ (2) or 0 ⊆ (3), etc., are the longest chains.

Example. Clearly dim(A2
k ) ≥ 2, since a point, the affine line A1

k , and the plane form a
chain of length 2.

Exercise. If R is nonzero, then dim(R) = 0 if and only if all prime ideals in R are maximal.

Theorem 12.4. A nonzero ring is artinian if and only if it is noetherian of dimension 0.

Proof. First suppose that R is artinian. Clearly dim(R) = 0 by the exercise above. To show
R is noetherian, let m1, . . . ,mn be maximal ideals in R. In any ring, the nilradical is the
intersection of the prime ideals, so rad(0) =m1 ∩·· ·∩mn in R. So by Lemma 12.3, there
is b > 0 such that (m1 ∩·· ·∩mn)b = 0. The containment m1 · · ·mn ⊆m1 ∩·· ·∩mn always
holds, so we have

m1
b · · ·mn

b = 0.

18/11
Consider the chain of ideals

R ⊇m1
1 ⊇m1

2 ⊇ ·· · ⊇m1
b ⊇m1

bm2 ⊇ ·· · ⊇m1
b · · ·mn

b = 0.

Here each quotient has the form I /mI for some maximal ideal m. This I /mI is a (R/m)-
vector space which satisfies DCC on (R/m)-linear subspaces. But every vector space is
free (i.e., has a basis), so I /mI is finite-dimensional as an (R/m)-vector space. Therefore
I /mI also satisfies ACC on (R/m)-linear subspaces, so R satisfies ACC on submodules.
That is, R is noetherian.

For the converse, the proof is very similar. Let R be a noetherian ring of dimension 0.
That is, every prime ideal in R is maximal. Since R is noetherian (recall Corollary 8.9), we
can write rad(0) =m1∩·· ·∩mn for some prime (hence maximal) idealsmi . By Lemma 8.10,
(rad(0))b = 0 for some b, since R is noetherian. Then we have m1

b · · ·mn
b = 0. Consider

some filtration of R as in our proof of the ‘only if’ direction. Then each subquotient of
such a filtration satisfies ACC, hence DCC, so R is artinian.

7After Wolfgang Krull, 1899–1971.
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13 Discrete valuation rings and Dedekind domains

Definition. A discrete valuation on a field k is a surjective function v : k →Z∪ {∞} satis-
fying each of the following:

(1) v(x) =∞ if and only if x = 0;

(2) v(x y) = v(x)+ v(y) for all x, y ∈ k;

(3) v(x + y) ≥ min{v(x), v(y)}.

Exercise. If (k, v) is a field with a discrete valuation, then the set R = {x ∈ k : v(x) ≥ 0} is a
subring of k, called the valuation ring of v . (In particular, you’ll have to show that v(1) = 0
and v(−x) = v(x).)

Examples. (1) For each prime p one can define a valuation onQ by v(p i a
b ) = i , where

a and b are coprime to p (and v(0) =∞).

(2) Let k be a field. Let f be an irreducible polynomial in k[x1, . . . , xn]. Then the
function v f defined on the field k(x1, . . . , xn) of rational functions by

v f ( f i a
b ) = i ,

where a,b ∈ k[x1, . . . , xn]à ( f ), is a valuation on k(x1, . . . , xn).
The valuation ring in (1) is the localisation Z(p), and the valuation ring in (2) is the

localisation k[x1, . . . , xn]( f ).

A domain R is a discrete valuation ring (dvr) if there is a valuation v on K = Frac(R)
for which R is the valuation ring {x ∈ K : v(x) ≥ 0}.

Let m= {x ∈ R : v(x) ≥ 0}. Then m is an ideal in R . Moreover, if x ∈ R àm, then v(x) = 0,
so 1

x ∈ K has valuation v( 1
x ) =−v(x) = 0. So 1

x ∈ R; that is, R àm consists of unites, so R is
a local ring with maximal ideal m.

Next let x be any element of R of valuation n. (Think of a function that vanishes to
order n.) Then v( y

x ) ≥ 0, so y
x ∈ R, so y ∈ (x) ⊆ R. In fact, (x) = {

y ∈ R : v(y) ≥ n
}
.

Now let I be any ideal in a dvr R . If I = 0, then we can choose n to be the least valuation
of elements of I . Then it follows that I = {

y ∈ R : v(y) ≥ n
}

. Thus if we choose an element
t ∈ R of v(t) = 1 (which exists by the surjectivity of v) then (t) = {

y ∈ R : v(y) ≥ 1
}
, so all

the ideals in R are 0 and the ideals

(1 = t 0)) (t )) (t 2)) · · · .

These ideals are distinct, since v(t n) = nv(t ) = n.
Therefore a dvr R is a PID, in particular is noetherian. The prime ideals in R are 0 and

(t ) (check!). So the maximal ideal in R is (t ). We conclude that a dvr is a noetherian local
domain of dimension 1.

Theorem 13.1. Let R be a noetherian local domain of dimension 1, with maximal ideal
m. Then the following are equivalent:

(1) R is a dvr;

(2) R is a regular local ring, that is dimR/m(m/m2) = 1;
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(3) R is normal.

(Note that (2) is equivalent to the assertion that m is principal, by Nakayama (Lemma
7.12).)

Proof. Let R be a noetherian local domain of dimension 1. Since R is a domain, 0 is a
prime ideal. Since dim(R) = 1 and R is local, the only two prime ideals in R are 0 and the
maximal ideal m. (Otherwise we get a chain of length 2.)

insert picture here

Let I be any nonzero, proper ideal in R: I 6= 0,R. Then rad(I ) must be equal to m, since
rad(I ) is an intersection of prime ideals (Corollary 8.9). Since R is noetherian, we have

mn ⊆ I ⊆m

for some n > 0.
First we show the implication (1)⇒(3): Let R be a dvr with valuation v . To show that a

ring is normal, we must show that (R is a domain and) for every element x ∈ K = Frac(R),
if we can write

xn +an−1xn−1 +·· ·+a0 = 0 (†)

for some elements ai ∈ R, then x ∈ R (i.e., R is integrally closed in Frac(R)). Here R ={
y ∈ K : v(y) ≥ 0

}
. Suppose x ∈ K is integral over R and satisfies (†). If v(x) < 0, then

v(xn) = nv(x), whereas

v(−an−1xn −·· ·−a0) ≥ (n −1)v(x),

a contradiction. So v(x) ≥ 0, and R is normal.
For a proof of the implication (3)⇒(2), see Atiyah–MacDonald, Proposition 9.2.
Finally, suppose that R is a regular local ring. That is, the (R/m)-vector space m/m2 is

1-dimensional. Let x ∈màm2. Nakayama’s lemma (7.12) guarantees that m= (x). (Since
R and noetherian, m is a finitely generated R-module.) It follows that mn = (xn) for every
n ≥ 0. We have mn 6=mn+1 for all n; indeed, if not, there would be an element a ∈ R such
that xn = xn+1a, but R is a domain (as x 6= 0 since R is not a field). We deduce from this
that 1 = xa, whence x is a unit, contradicting our assumption that x ∈m.

Let y be any nonzero element of R. Is
⋂

n m
n = 0? No, because the ideal (y) satisfies

mn ⊆ (y) ⊆m

for some n > 0. So y ∉mn+1 for such an n. Therefore there is a maximal number j such
that y ∈ m j ; we define v(y) = j . Then y has a nonzero image in m j /m j+1, which is a
1-dimensional (R/m)-vector space spanned by x j . By Nakayama we have (x j ) =m j = (y).
So (since R is a domain), y is the product of x j and a unit. That is, every nonzero element
y of Frac(R) is also the product of x j and a unit for some integer j ∈ Z; define v(y) = j
in this case. Clearly v(ab) = v(a)+ v(b). The other condition v(a +b) ≥ min{v(a), v(b)}
follows from the fact that R = {

y ∈ K : v(y) ≥ 0
}

is closed under addition.

21/11
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Definition. A Dedekind domain is a normal noetherian domain of dimension 1. (That is,
in a Dedekind domain, the ideal 0 is prime, and there are some maximal ideals, but no
other primes.)

For R a Dedekind domain, every local ring of R at a maximal ideal is a dvr. So we have
one valuation of K = Frac(R) for each maximal ideal in R. E.g., R =C[x, y]/(x2 + y2 −1).

Examples. (1) Any PID which is not a field is a Dedekind domain. (Recall PID ⇒ UFD
⇒ normal.) So Z and k[x] are Dedekind domains.

(2) For K a number field, that is a field that is finite as a Q-vector space, the ring of
integers OK in K is the integral closure of Z in K . (Frac(OK ) = K , so OK is normal.)
Here OK is finite over Z, hence noetherian. You can check that dim(OK ) = 1 using
results on finite morphisms.
Such a ring need not be a PID or factorial. The failure of this is measured by the
Picard group Pic(OK ), the “ideal class group of K ", which is the group of line bundles
on SpecK under the tensor product ⊗.

(3) Let X be a smooth affine algebraic curve over a field k. (We haven’t defined smooth
in general, but a ring of dimension 1 is smooth if dim(m/m2) = 1 for every maximal
ideal m ⊆ O (X ).) Then O (X ) is a Dedekind domain. It is a PID (or a UFD) if and
only if Pic(X ) = 0, which is the case for k algebraicly closed if and only if the smooth
compactification of X has genus 0.

13.1 Krull’s Principal Ideal Theorem

Atiyah–MacDonald uses the notion of completeness for a ring and Hilbert polynomials to
approach dimension theory. Our approach is more efficient, but the notions discussed in
Atiyah–MacDonald are important.

Definition. Let p be a prime ideal in a ring R. The codimension codim(p) of p is the
supremum of lengths of all chains of prime ideals contained in p.

Geometrically, think of the codimension as the supremum of lengths of chains of
irreducible closed subsets V (q) containing V (p) in Spec(R). Thus codimension measures
how far V (p) is from all of Spec(R). Recall that prime ideals in Rp correspond bijectively
to prime ideals in R contained in p, so codim(p) = dim(Rp).

Theorem 13.2 (Krull’s Principal Ideal Theorem). Let R be a noetherian ring and (a) 6= R a
principal ideal. Then every minimal prime containing (a) has codimension ≤ 1.

Recall that minimal primes containing (a) correspond to irreducible components of
the variety {a = 0} in Spec(R), so this theorem disallows irreducible components of {a = 0}
of large codimension. (A closed point would be a likely candidate for such an irreducible
component (and so would be unlikely to occur).)

Proof. Let p be a minimal prime ideal containing (a). We want to show that dimRp ≤ 1.
We’re given that the ideal (a) ⊆ Rp has pRp as a minimal prime over (a), but pRp is the
only maximal ideal in the local ring Rp. This means that pRp is the only prime in Rp that
contains (a). Write R for Rp from now on.
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We now have the following situation: R is a noetherian local ring with maximal ideal
m, a ∈ R, and {a = 0} ⊆ Spec(R) is the closed point in Spec(R). We want to show that
dimR ≤ 1. Equivalently, we can show that any prime q 6=m has codimension 0. (That is,
there is no prime strictly smaller than q.) In particular, a ∉ q. Let q(i ) be the inverse image
of qi Rq in R , called the i th symbolic power of q. Consider the following sequence of ideals
in R:

(a)+q(1) ⊇ (a)+q(2) ⊇ ·· · (?)

Since m is the only prime ideal in R that contains (a), the quotient ring R/(a) has only one
prime ideal. So R/(a) has dimension 0, so is artinian. Therefore the sequence (?) must
terminate: there is a positive integer n such that (a)+q(n) = (a)+q(n+1); i.e., any element
q ∈ (a)+q(n) can be written as q = r a +q ′ for some elements r ∈ R and q ′ ∈ q(n+1). By the
definition of q(n), since q −q ′ = r a ∈ q(n) and a ∉ q, we have r ∈ q(n). Thus we have

q(n) = aq(n) +q(n+1).

By Nakayama’s lemma (7.12) the finitely generated R-module q(n)/q(n+1) is 0 (since a ∈
m ⊆ R). Consequently qnRq = qn+1Rq ⊆ Rq. By Nakayama’ lemma again, it must be
that qnRq = 0. That is, the maximal ideal in Rq is nilpotent. So dim(Rq) = 0, and q has
codimension 0, as we wanted.

Corollary 13.3. Let R be a noetherian ring and let x1, . . . , xc be elements of R. Every
minimal prime over (x1, . . . , xc ) has codimension ≤ c.

Proof. Let p be a minimal prime over (x1, . . . , xc ). Localising at p, we reduce to showing
the following: Let R be a noetherian local ring with maximal ideal m, and let x1, . . . , xc ∈m.
Suppose m is the only prime in R containing (x1, . . . , xc ). We want to show that dimR ≤ c.
Clearly the quotient ring R/(x1, . . . , xc ) has only one prime ideal, so it is artinian. So the
ideal m⊂ R is nilpotent modulo (x1, . . . , xc ).

Let
p0 ( · · ·( pr

be a chain of prime ideals in R. We want to show that r ≤ c. Without loss of generality
we can assume that pr =m ⊂ R. Since R is noetherian we can also assume that pr−1 is
maximal among primes not equal to pr =m. We claim that pr−1 is a minimal prime ideal
over some ideal generated by c −1 elements. Then we’re done by induction on c : we have
r −1 ≤ c −1, so r ≤ c as we want.

Let us prove that claim. Since pr−1 6=m, the ideal pr−1 cannot contain all of x1, . . . , xc .
Say x1 ∉ pr−1. Then the maximal ideal m is a minimal prime over pr−1 + (x1). And so
R/(pr−1 + (x1)) is noetherian of dimension 0, hence artinian. So there is a positive integer
n such that xi

n = ai x1 + yi for some ai ∈ R, yi ∈ pr−1, for i = 2, . . . ,c. Therefore the ideal
(x1, y2, . . . , yc ) contains a power of m, and we have arranged that y2, . . . , yc ∈ pr−1.

We know that m is a minimal prime over (x1, y2, . . . , yc ), so the image of m in the23/11
quotient R/(y2, . . . , yc ) is a minimal prime over (x1). By Krull’s Principal Ideal Theorem
13.2, the image of m in R/(y2, . . . , yc ) has codimension 1, since (y2, . . . , yc ) ⊆ pr−1 ⊆ pr .
Therefore the image of pr−1 in R/(y2, . . . , yc ) has codimension 0. Equivalently, pr−1 is a
minimal prime over the ideal (y2, . . . , yc ). By induction on c for this corollary, it follows
that codimpr−1 ≤ c −1. Therefore r ≤ c.
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Corollary 13.4. Every noetherian local ring R has finite dimension.

Proof. Since R is noetherian, its unique maximal ideal m is finitely generated as an ideal:
say m= (x1, . . . , xc ). By Corollary 13.3 we have codimm≤ c. So R has dimension ≤ c.

Remark.

(1) By Nakayama’s lemma (7.12) this proof shows that for R noetherian and local,

dimR ≤ dimR/m(m/m2).

(2) This implies that any prime ideal in any (not necessarily local) noetherian ring has
finite codimension.

(3) In 1962 Masayoshi Nagata constructed a noetherian ring of infinite dimension. In
such a ring R, there is no upper bound for dimRm at maximal ideals m⊂ R. (See
Examples Sheet 3.)

14 Dimension theory for finitely generated algebras over a field

Lemma 14.1. Let k be a field, n ∈N= {0,1, . . . }. Then every maximal ideal in the polyno-
mial ring k[x1, . . . , xn] can be generated by n elements.

Proof. If k is algebraicly closed, then the Nullstellensatz (11.6) says that every maximal
ideal m⊂ k[x1, . . . , xn] is of the form (x1−a1, . . . , xn−an) for some element (a1, . . . , an) ∈ kn .

In general, let m be a maximal ideal in k[x1, . . . , xn]. Then the field F := k[x1, . . . , xn]/m
is finite over k by the Nullstellensatz (11.3). For 0 ≤ i ≤ n define

Fi := im(k[x1, . . . , xn] → F ).

So we have a chain
k = F0 ⊆ F1 ⊆ ·· · ⊆ Fn = F.

Each Fi is a domain finite over k, so is a field (ES 1, Question 4). And each Fi+1 is a
quotient of Fi by some maximal ideal, so each Fi+1 is isomorphic to Fi [xi+1]/( fi+1(xi+1))
for some fi+1 ∈ Fi [xi+1]. (Recall that a polynomial ring in one variable over a field is a
PID.) We can think of fi+1 as a k-polynomial in the variables x1, . . . , xi , xi+1. Then we have

F = k[x1, . . . , xn]/( f1(x1) = 0, f2(x1, x2) = 0, . . . , fn(x1, . . . , xn) = 0).

Therefore m is generated by n elements.

Corollary 14.2. dimk[x1, . . . , xn] = n.

Proof. The chain of prime ideals

0 ⊂ (x1) ⊂ (x1, x2) ⊂ ·· · ⊂ (x1, . . . , xn)

shows that dimk[x1, . . . , xn] ≥ n.
Conversely, we showed that every maximal ideal in R := k[x1, . . . , xn] is generated by n

elements (14.1), so dimRm ≤ n for every maximal ideal m⊂ R. (Notice that the maximal
ideal in Rm is mRm.) But dimR = supmdimRm ≤ n (where the supremum is taken over all
maximal ideals m⊂ R).
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Fact from field theory: for any fields F ⊆ E , there is some set I ⊆ E such that the
subfield F (x : x ∈ I ) of E generated by I and F is isomorphic to the field F (x : x ∈ I ) of
F -rational functions in variables from I , and E is algebraic over F (x : x ∈ I ). One shows
that |I | is independent of choice of I . In light of this, |I | is defined to be the transcendence
degree of the field extension E/F and is denoted trdeg(E/F ).

Lemma 14.3. Let R be a domain of finite type over a field k. Then dimR is at most the
transcendence degree of Frac(R) over k.

In fact, dimR = trdeg(Frac(R)/k), and we will prove this later.

Proof. By Noether’s normalisation lemma 11.2 R is finite over a subring isomorphic
to the polynomial ring k[x1, . . . , xn] for some n ∈ N, so Frac(R) is a finite extension of
Frac(k[x1, . . . , xn]) = k(x1, . . . , xn). It’s an easy fact of field theory that finite extensions of
fields are algebraic, so trdeg(Frac(R)/k) = n.

Let
p0 ( p1 ( · · ·( pr

be a chain of prime ideals in R. We want to show that r ≤ n. Restricting to the subring
gives a chain of primes in k[x1, . . . , xn]:

q0 ( q1 ( · · ·( · · ·qn .

(The containments are strict by 10.12.) Therefore r ≤ n since dimk[x1, . . . , xn] = n.

Lemma 14.4. Let X be an affine variety over a field k (that is, X is Spec of a ring of finite
type over k.) Let n be the transcendence degree of the function field

k(X ) := Frac(O (X ))

over k. Let g ∈O (X ) and suppose g 6= 0. Then any irreducible component Y of {g = 0} ⊂ X
satisfies trdeg(k(Y )/k) = n −1.

Proof. After replacing X by a standard open subset {h 6= 0} = Spec(O (X )[1/h]), we can
assume that {g = 0} is irreducible: set Y = {g = 0}. Write X for that open subset {h = 0}. We
want to show that trdeg(k(Y )/k) = n −1.

We first prove this for X = An
k . Use the Preparation Lemma 11.1: our function g ∈

k[x1, . . . , xn] can be written (after some k-algebra automorphism of k[x1, . . . , xn]) as

g = cxn
e +

e−1∑
i=0

ai (x1, . . . , xn−1)xn
i

with c ∈ k∗. So the map Y → An−1 is finite and surjective. Therefore O (Y ) is finite over
k[x1, . . . , xn−1], so trdeg(k(Y ),k) = n −1.

For the general case, we use Noether’s normalisation lemma 11.2 to find a finite25/11
surjective morphism f : X → An

k . Consider the morphism H = ( f , g ) : X → An+1. The
morphism H is finite, since f is finite. Also, because f : X → An

k is finite, the element
g ∈O (X ) satisfies some monic polynomial equation

g e +ae−1g e−1 +·· ·+a0 = 0,
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where ai ∈ k[x1, . . . , xn]. That is, H maps X onto a hypersurface (codimension-1 subvari-
ety) in An+1 defined by

Z = {Φ(xn+1) := (xn+1)n +ae−1(xn+1)e−1 +·· ·+a0 = 0}.

Since O (X ) is a domain, we can assume that the polynomial Φ is irreducible. (Φ is still
monic in xn+1.) That is, H maps X to an irreducible hypersurface Z ⊆ An+1 and Z
is finite over An (because Φ is monic). Since the maps X → Z and Z → An are finite
morphisms and their composite X → An is dominant (equivalently, surjective), it follows
that H : X → Z is dominant. (Recall 10.12, which describes the behaviour of prime ideals
in the integral extension O (An) ⊆O (Z ).) The hypersurface Y = {g = 0} ⊆ X is the inverse
image of S = {xn+1 = 0} ⊆ Z , which by the equation for Z can be described as

S = {Φ(x1, . . . , xn+1) = 0 and xn+1 = 0}

= {a0(x1, . . . , xn) = 0 and xn+1 = 0} ⊆ An+1.

Here a0 6= 0 ∈ k[x1, . . . , xn] since Φ is irreducible. So S is isomorphic to an irreducible
hypersurface in An+1, so (as we showed in the case X = An) trdeg(k(S)/k) = n +1. But we
have a finite surjective morphism Y → S (a restriction of the finite surjective morphism
X � Z ), so O (Y ) is a finite extension of O (S). Hence trdeg(k(Y )/k) = n−1, as desired.

We can now prove the main results on dimension for algebras of finite type over a
field.

Theorem 14.5. Let X be an (irreducible) affine variety over the field k. The following
numbers are equal:

(1) the Krull dimension dim(X );

(2) trdeg(k(X )/k);

(3) the Krull dimension dim(O (X )m) of the localisation at any maximal ideal m⊂O (X ).

Recall that, by definition of affine variety, O (X ) is a domain of finite type over k.

Proof. It suffices to show that, for an affine variety X over k we have dim(O (X )m) =
trdeg(k(X )/k) for every maximal ideal m⊂O (X ), for dimO (X ) = supmdim(O (X )m).

We’ve shown (cf. 14.3) that

dim(O (X )m) ≤ dimO (X ) ≤ trdeg(k(X )/k).

To prove the inequality trdeg(k(X )/k) ≤ dim(O (X )m) fix a maximal ideal m⊂O (X ), that is,
a fixed point (corresponding to m) p ∈ X . We want to produce one chain of subvarieties

p = Y0 ( Y1 ( · · ·( Yn = X ,

where n = trdeg(k(X )/k). There is nothing to do if n = 0, so suppose n > 0. We will show
that the closed point p is not all of X ; suppose, for a contradiction, that X = {p}. Then
O (X ) has only one prime ideal, which must be 0 since O (X ) is a domain. So the ideal 0 is
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maximal in O (X ); that is, every proper ideal in O (X ) is a domain, so O (X ) is a field. By the
Nullstellensatz (Corollary 11.3), O (X ) is finite over k, so we have

n = trdeg(k(X )/k) = trdeg(O (X )/k) = 0,

a contradiction. Thus if n > 0 the closed point p is not all of X , so there is a nonzero
regular function g ∈O (X ) that vanishes at p. The lemma above (14.4) shows that every
irreducible component Y of {g = 0} ⊂ X satisfies trdeg(k(Y )/k) = n−1. Pick a component
Y containing p. By induction on n, there is a chain of subvarieties of length n −1 in Y
through p:

{p}( Y1 ( · · ·( Yn−1 ⊆ X .

This completes the proof.

Definition. A noetherian ring R is catenary8if for any pair of prime ideals p⊆ q in R, any
two maximal chains of primes from p to q have the same length.

Example. If R is a catenary local ring and p⊂ R is prime, then it’s easy to check that

dim(R) = dim(R/p)+codim(p).

This is a nice property of dimension to have, since we think of dim(R/p) as measuring the
chains from p to R and of codim(p) as measuring chains from 0 to p.

We’ve shown that every noetherian local ring has finite dimension (Corollary 13.4), but
not every noetherian local ring is catenary. (Nagata provided an example in 1956 — see
Reid’s book for an outline of the construction.)

Theorem 14.6. All algebras of finite type over a field, and also all localisations of such
rings, are catenary.

Notice the localisation of a ring of finite type over a field need not be a ring of finite
type over a field. For example, the localisation

C[x](x) =C[x][ 1
(x−a) : a ∈C , a 6= 0]

is not finitely generated as a C-algebra.

Proof. Prime ideals in a localisation R[S−1] are in one-to-one correspondence with primes
in R àS. So if R is catenary, then so is R[S−1].

Let R be an algebra of finite type over a field k. Suppose we’re given closed subvarieties
X ⊆ Y ( SpecR; we want to show that any two maximal chains

X = X0 ( X1 ( · · ·( Xr = Y

of subvarieties have the same length. In fact, we’ll show that any such maximal chain of
subvarieties has length r = dimY −dim X . For any such chain it’s clear by the definition
of Krull dimension that

dim X0 < dim X1 < ·· · < dim Xr .

8In Latin “catena” means “chain".
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So such a chain has length≤ dimY −dim X . We need to show that every maximal chain has
length dimY −dim X . It suffices to show the following: if S ( T are subvarieties of Spec(R)
with dimT −dimS ≥ 2, then there is an intermediate subvariety V : S (V ( T . To show
this notice there is a regular function g on T that vanishes on S but is not identically 0 on
T . We know that every irreducible component V of {g = 0} satisfies trdeg(k(V )/k) = n −1
(Lemma 14.4), so dimV = n−1. We have S ⊆ {g = 0}, so S is contained in some irreducible
component V of {g = 0}. Then dimS 6= dimV 6= dimT , so S (V ( T , as desired.

28/11

15 Regular local rings

We’ve seen that the dimension of a noetherian local ring (R,m) is at most dimR/m(m/m2).
We will argue that this value, dimR/m(m/m2), is easy to compute. (In algebraic geometry,
the quotient module m/m2 is called the Zariski cotangent space.)

Definition. Say a noetherian local ring R is regular if equality holds:

dimR/m(m/m2) = dimR.

Example. Let R = k[x1, . . . , xn](x1,...,xn ), the polynomial ring over k localised at the origin.
Then the maximal ideal in R is m= (x1, . . . , xn) ⊂ R. So f ∈m is a rational function on An

k
that is defined and takes the value 0 at the origin. What is the class of a function f in the

quotient m/m2? Answer: it’s given by the first derivatives of f at 0: ( ∂ f
∂x1

|0, . . . , ∂ f
∂xn

|0) ∈ kn .

Definition. For f ∈ k[x1, . . . , xn] over a field k, we define the partial derivatives of f on
monomials as follows:

∂

∂x1
(x1

a1 · · ·xn
an ) = a1x1

a1−1x2
a2 · · ·xn

an

(and similarly for xi , i 6= 1) and extending linearly.

Thus defined, ∂
∂xi

: k[x1, . . . , xn] → k[x1, . . . , xn] is a k-linear function, as you can check.
Note that a1 ∈N gives an element of k:

a1 = 1k +·· ·+1k︸ ︷︷ ︸
a1 summands

.

The partial derivative has the usual properties:

∂

∂xi
(α f + g ) =α ∂ f

∂xi
+ ∂g

∂xi
,

∂

∂xi
( f g ) = f

∂g

∂xi
+ ∂ f

∂xi
g ,

etc. These facts are easy to show. Exercise!
One can also define the partial derivatives of a rational function, by the usual formulas

for ∂
∂xi

( f
g ).
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Next let X be an affine scheme of finite type over a field k. We can embed X as a closed
subscheme of An

k , X ,→ An
k . (This corresponds to a map φ : k[x1, . . . , xn]�O (X ).) Here X

will be defined by some equations, X = { f1 = 0, . . . , fr = 0} ⊆ An
k . That is, in algebraic terms,

kerφ= ( f1, . . . , fr ).

Definition. A k-rational point of a k-scheme X is a closed point p ∈ X whose residue
field is k.

(Notice that the residue field of a point in X of finite type over k is always a finite
extension of k. (?))

Write X (k) for the set of k-rational points of X . Then for X ,→ An ,

X (k) = {
(a1, . . . , an) ∈ kn : f1(a1, . . . , an) = 0, . . . , fr (a1, . . . , an) = 0

}
(with the situation as in the previous paragraph).

When is the local ring of X at a k-rational point regular? Answer: when X is smooth.

Definition. Let X be an affine scheme of finite type over a field k. Choose an embedding
X ,→ Am+n

k as a closed subscheme. We say X is smooth of dimension n over k if all
irreducible components of X have dimension n, and the matrix of partial derivatives(

∂ fi

∂x j

)
r×(m+n)

has rank exactly m everywhere on X . (Here the fi are the defining polynomials for X .)

It is a fact that smoothness of X is independent of the choice of embedding and
defining equations.

Remark. Given that dim X = n, we can (equivalently) weaken the requirement to rank ≥
m.

To be more explicit, an n ×n matrix over a field k has rank at least m if and only if
there is some m ×m minor in A that is nonzero. Notice that each m ×m minor of the
matrix ( ∂ fi

∂x j
) is a polynomial in k[x1, . . . , xn]. The zeroset of each such minor is a closed

subset of An , hence a closed subset of X . So X is smooth of dimension n if and only if the
intersection of these closed subsets of X is empty.

Example. Let k be a field and put X = {x y = 0} ⊂ A2. Then all irreducible components of
X have dimension 1, so the matrix of derivatives is(

∂ f1

∂x
∂ f1

∂y

)
= (

y x
)

.

So X is smooth if and only if this matrix has rank ≥ 1 everywhere on X , so X is non-smooth
over k where x = y = 0 and (x, y) ∈ X . (Note the non-smooth locus is a set of points where
a bunch of polynomials are 0, so is closed in X .)

Lemma 15.1. Let X be an affine scheme of finite type over a field k. Let p ∈ X (k) be a
k-rational point in X . Then the local ring of X at p is regular if and only if the smooth
locus of X (which is an open subset of X ) contains p.
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Proof. Choose a closed embedding of X into Am+n over k.

X Am+n

Speck

Let n = dim X . What is mp /mp
2, where mp = O (X )p ? (This is equal to the quotient

m/m2 in O (X )p , where m is the maximal ideal corresponding to p.) We claim m⊂O (X )
is the image of the maximal ideal n= k[x1, . . . , xm+n] corresponding to p. Let I = kerφ(=
( f1, . . . , fr )) in the following diagram:

k[x1, . . . , xm+n] O (X ) k
φ evaln at p

We have a map R�R/I , where R = k[x1, . . . , xm+n]. Next m2 ⊂ R/I is the image of n2 ⊂ R.
(“This is obvious if you think about it.”) So the inverse image of m2 ⊂ R/I in R is the
ideal n2 + I . (Think abelian groups: imC under the map A � A/B is (B +C )/B ∩C .)
So m/m2 ∼= n/n2 + I . Here n/n2 is a k-vector space of dimension m +n (given by the
first derivatives of a function that vanishes at p). So m/m2 is km+n modulo the k-linear
subspace spanned by (

∂ f1

∂x1

∣∣∣∣
p

, . . . ,
∂ f1

∂xm+n

∣∣∣∣
p

)
∈ km+n ,

...(
∂ fr

∂x1

∣∣∣∣
p

, . . . ,
∂ fr

∂xm+n

∣∣∣∣
p

)
∈ km+n ,

So the local ring O (X )p is regular if and only if the matrix of derivatives ( ∂ fi

∂x j
) has rank

exactly m, because dimk (m/m2) = m +n. But this is true if and only if X is smooth of
dimension n at p.9

30/11

15.1 Miscellaneous questions answered

What is the affine line A1
k for a field k that’s not algebraicly closed?

Speck[x] is the generic point (0) and the closed points ( f ) for f ∈ k[x] irreducible (monic,
say).

Definition. A polynomial f ∈ k[x] is separable iff it is coprime to its derivative: gcd( f , f ′) =
1. (Recall that this is equivalent to the condition that f factors as a product of distinct
linear terms (x −a) over the algebraic closure k.)

9Recall we set n = dim X .
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Definition. A field k is perfect if either chark = 0 or chark = p > 0 and every element of k
is a pth power in k.

For example, Fp is perfect, Fp is perfect, but Fp (x) is not perfect.

Remark. If k is perfect, then every irreducible polynomial in k[x] is separable.

Let k be a perfect field, and let f ∈ k[x] be irreducible (so f is separable). Then in k[x]
we have

f = (x −a1) · · · (x −an)

for some distinct a1, . . . , an ∈ k. Then a1, . . . , an form a Gal(k/k)-orbit in k. Recall the
Galois group Gal(k/k) is the group of automorphisms of the field k that fix k pointwise
(that is, are the identity on k). Conclusion: if k is perfect, the set of closed points in the
affine line A1

k can be identified with k/Gal(k/k), the set of orbits of Gal(k/k) on k.

Example. The closed points in A1
R

are C/Gal(C/R) = C/(Z/2), which can be identified
with the closed upper half-plane in C. The monic irreducible polynomials in R are x −a
for a ∈R and x2 +bx + c with b2 −4c < 0.

What is the geometric meaning of M ⊗A C or A⊗B C ?

A finitely generated projective A-module M corresponds geometrically to a vector bundle
on Spec(A), and elements of M are sections of the vector bundle over Spec(A).

A ring homomorphism A → B corresponds to a morphism f : SpecB → Spec A of
affine schemes, and f ∗M corresponds to M ⊗A B (“pullback of vector bundles”). Under
this correspondence, M ⊗A A/m is the fibre of M at m.

For rings and homomorphisms B → A and B → C , we have morphisms of affine
schemes

X Z

Y

Then Spec(A⊗B C ) = X ×Y Z , where ×Y is fibre product of affine schemes. For example,
Spec(k[x]⊗k k[y]) = A1

k ×Speck A1
k = A2

k . (Recall k[x]⊗k k[y] ∼= k[x, y].)

What is the geometric meaning of normality?

Let R be a domain. Recall that, by definition, R is normal iff R is integrally closed in Frac(R).
Equivalently: for any finite extension R ⊆ S of domains such that Frac(R) = Frac(S), it
must be that R = S. Assume now that R is a domain of finite type over a field. Then
X = Spec(R) is normal iff every finite birational morphism f : Y → X of affine varieties is
an isomorphism. (Geometrically, a morphism of varieties over a field k is birational iff
it restricts to an isomorphism from some dense open subset of X to some dense open
subset of Y .)

Example. The variety X = {x2 = y3} ⊂ k2 is not normal (is “abnormal"?) since we can write
down a finite birational morphism to X which is not an isomorphism, namely A1

k → X ,
t 7→ (t 3, t 2).
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But, for instance, A1
k is normal. There are finite morphisms to A1

k that are not isomor-
phisms, but they cannot be birational (e.g., the map A1

k → A1
k , t 7→ t 2 is finite, but not

birational).

15.2 Regular local rings, concluded

Examples. (1) The local ring Z(p) is a regular local ring of dimension 1 (equivalently, a
dvr: Recall Theorem 13.1).

(2) k[x1, . . . , xn](x1,...,xn ) is a regular local ring of dimension n.

(3) The power series ring k�x1, . . . , xn� is a regular local ring of dimension n with maxi-
mal ideal m= (x1, . . . , xn).

(4) The ring Zp of p-adic integers (i.e., the inverse limit lim←−−n
Z/pn) is a regular local

ring of dimension 1, with maximal ideal m= (p).

Theorem 15.2. Let X be a smooth affine scheme of dimension n??? over a field k. Then
every local ring of X (not just at closed points!) is regular.

Notice that for R =O (X ) and p⊂ R prime, we have dimRp = codim(p).

Insert picture of cone & stuff here

Geometrically this theorem means that if X is smooth of dimension n, Y ⊂ X is a subva-
riety of codimension r , then Y is defined over a dense open subset by only r equations
(“complete intersection”).

Theorem 15.3 (Auslander–Buchsbaum 1959). Every regular local ring is a factorial domain
(UFD).

In light of this theorem, we have a string of implications

regular local ring ⇒ factorial domain ⇒ normal domain ⇒ domain.

The proof of Theorem 15.3 uses homological algebra (Ext & Tor). If you’re interested,
see Eisenbud’s book or Kaplansky’s Fields and rings.

Corollary 15.4. Let X be a smooth affine variety of dimension n over a field k. Then let
Y ⊂ X be a codimension-1 subvariety. The local ring OX ,Y =O (X )p (where p corresponds
to Y ) is a dvr.

So we get a valuation v : k(X ) →Z∪ {∞} that measures the order of zeros along Y of a
rational function on X . (Here FracO (X )p = FracO (X ) = k(X ).)

Lemma 15.5. Let R be a factorial domain. Every codimension-1 prime ideal in R is
principal.

Proof. Let p⊂ R be a codimension-1 prime ideal. Here 0 is prime in R, so p 6= 0 and there
is no prime q such that 0( q( p. Since p 6= 0 there is a nonzero element f ∈ p. And f is
not a unit, so (since R is factorial) we can write f as a product of irreducible elements:
f = f1 · · · fr . Since p is prime, at least one fi , say f1, belongs to p. Then ( f1) is prime and
nonzero, so p= ( f1).
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Geometrically, this means a codimension-1 subvariety Y of X = Spec(R) is defined by
one equation: Y = { f = 0}.

Corollary 15.6. Let X be a smooth affine variety over a field k, and suppose Y ⊂ X is
a codimension-1 subvariety. The ideal I = ker(O (X ) → O (Y )) is locally generated by
1 element, so I is a locally free O (X )-module of rank 1. Geometrically, that means I
corresponds to a line bundle, called O (−Y ), on X .

This correspondence between line bundles and codimension-1 subvarieties is funda-
mental to algebraic geometry.
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