Section Assignment #10 -Done Inclass 4/24
- Find both an upper and lower bound for the value of the integral \(\int_1^8 \sqrt[3]{x}\, dx\).
\( \sqrt[3]{x}\) is increasing on [1,8], so \(1 \leq \sqrt[3]{x} \leq \sqrt[3]{8}=2\). From the max-min property of integrals, this implies
\[
1(8-1)\leq \int_1^8 \sqrt[3]{x}\,dx \leq 2(8-1).
\]
That is \(\int_1^8 \sqrt[3]{x}\, dx \in [7,14]\).
- Suppose you know \(g(x) \leq f(x)\) for \(x\in[5,7]\), \(g(x)\leq h(x)\) for \(x\in[0,5]\), \(\int_5^7 f(x)\, dx=12\) and \(\int_0^5 h(x)\, dx=4\).
What can you say about the value of the integral \(\int_0^7 g(x)\, dx\)?
First, using the additive property for integrals we write \( \int_0^7g(x)\, dx=\int_0^5g(x)\, dx+\int_5^7g(x)\, dx\). Next, use the bounds on \(g\) along with the domination property of integrals to get
\[
\int_0^5g(x)\, dx \leq \int_0^5 h(x)\, dx=4 \quad \textrm{and} \quad \int_5^7g(x)\, dx \leq \int_5^7f(x)\, dx=12.
\]
Although we do not know the exact value of \(\int_0^7g(x)\, dx\), from this we can conclude
\[
\int_0^7g(x)\, dx \leq 4+12=16.
\]
- Express the following limit as a definite integral
\[\lim_{||P|| \rightarrow 0} \sum_{k=1}^n (\sin(c_k)+c_k\; ) \Delta x_k,
\]
where \(P\) is a partition of the interval \([-\pi,2\pi]\).
\[
\int_{-\pi}^{2\pi} \sin(x)+x\, dx
\]