Practice Problems for 4/29
- Suppose \(F(x)=\int_0^x \frac{2}{t^3+1} dt\). Explain why \(F\) is differentiable at \(x=1\), then find the value of \(F'(1)\).
- Compute \(\frac{d}{dx}\int_x^{\sin x} 3t^2\, dt\).
- Which of the following can be evaluated using the Fundamental Theorem of Calculus Part 2?
- \( \int_1^5 \frac{x-3}{x^2+1}\,dx\)
- \( \int_1^5 \frac{x-3}{x^2-4}\, dx\)
- \(\int_{-1}^1 \frac{1}{x}\, dx\)
- \(\int_{1/2}^1 \frac{1}{x}\, dx\)
- \( \int_{-1}^1 \sqrt{1-x^2}\,dx\)
- Evaluate \( \int_0^1 4x^3-9x^2+2x-3\, dx\)