The Mathieu Differential Equation and Generalizations to Infinite Fractafolds

 

Introduction

Figures for the MDE on the Line

Figures for the Fractal MDE

Contact Info

ArXiV Link


Figures for the MDE on the Line:

 

missing
Stable and Unstable Regions of the $\delta$-$\varepsilon$ plane.
missing
Curves corresponding to expansions of larger periods: curves with $2\pi$-periodic solutions (black solid and black dashed), curves with $4\pi$-periodic solutions (orange solid and orange dashed), curves with $8\pi$-periodic solutions (red dashed) and curves with $16\pi$-periodic solutions (blue dashed).
missing
The width of the $5$th stable band.
missing
$1$st stable band, $a=0.2278,b=-0.09431,c=1.994$
missing
$2$nd stable band, $a=1.390,b=0.8504,c=1.24$
missing
$3$rd stable band, $a=6.045,b=3.674,c=0.9081$
missing
$4$th stable band, $a=20.17,b=2.507,c=0.6972$
missing
$5$th stable curve, $a=56.06,b=23.20,c=0.5527$
missing
$6$th stable band, $a=136.8,b=12.38,c=0.4496$
missing
$7$th stable band, $a=303.0,b=20.39,c=0.374$
missing
$8$th stable band, $a=623.9,b=164.2,c=0.3168$
missing
$9$th stable band, $a=1212,b=283.9,c=0.2726$
missing
$10$th stable curve, $a=2248,b=473.9,c=0.2377$
missing
The triangle area corresponding to $R_{w_1}$. The green area is the stable region, and shaded area is the unstable region.
missing
The triangle area corresponding to $R_{w_2}$. The green area is the stable region, and shaded area is the unstable region.
missing
The triangle area corresponding to $R_{w_3}$. The green area is the stable region, and shaded area is the unstable region.
missing
The triangle area corresponding to $R_{w_4}$. The green area is the stable region, and shaded area is the unstable region.
missing
Probabilities $P_i$ and the fitting curve.
missing
Normalized solutions corresponding to $p(\sin t,0)$ (solid black), $p(\sin t,5)$ (red), $p(\sin t,10)$ (orange), $p(\sin t,20)$ (green), $p(\sin t,40)$ (blue), $p(\sin t,80)$ (purple).
missing
Normalized solutions corresponding to $p(\sin 2t,0)$ (solid black), $p(\sin 2t,5)$ (red), $p(\sin 2t,10)$ (orange), $p(\sin 2t,20)$ (green), $p(\sin 2t,40)$ (blue), $p(\sin 2t,80)$ (purple).
missing
Normalized solutions corresponding to $p(\sin 3t,0)$ (solid black), $p(\sin 3t,5)$ (red), $p(\sin 3t,10)$ (orange), $p(\sin 3t,20)$ (green), $p(\sin 3t,40)$ (blue), $p(\sin 3t,80)$ (purple).
missing
$t$-position of maximal point on curve $p(\sin t,\varepsilon)$, with $a=3.031,b=5.736,c=10.18,d=14.88$.
missing
$t$-position of maximal point on curve $p(\sin 2t,\varepsilon)$, with $a=10.31,b=22.8,c=17.43,d=29.09$.
missing
$t$-position of maximal point on curve $p(\sin 3t,\varepsilon)$, with $a=432.5,b=1345,c=607.2,d=1257$. \caption{t-position of maximal points, with fitting curve $t=\frac{a\varepsilon+b}{\varepsilon^2+c\varepsilon+d}$.
missing
$t$-position of the second maximal point on curve $p(\sin 2t,\varepsilon)$, with $a=2.272,b=4.602,c=12.75,d=19.84$.
missing
$t$-position of the second maximal point on curve $p(\sin 3t,\varepsilon)$, with $a=710.8.5,b=1894,c=5324,d=1.045\times 10^4$.
missing
t-position of the third maximal points on curve $p(\sin 3t,\varepsilon)$, with fitting curve $t=\frac{a\varepsilon+b}{\varepsilon^2+c\varepsilon+d}$, $a=9.567,b=23.07,c=22.86,d=40.46$.
missing
u-position of the second maximal points on curve $p(\sin 2t,\varepsilon)$, with fitting curve $t=\frac{a\varepsilon^2+b\varepsilon+c}{\varepsilon^2+d\varepsilon+e}$. $a=0.8393,b=-0.5638,c=5.566,d=-0.1973,e=5.571$.
missing
$u$-position of the second maximal point on curve $p(\sin 3t,\varepsilon)$, with $a=0.7784,b=-3.71,c=21.57,d=150,e=-3.899,f=30.57,g=149.9$.
missing
$u$-position of the third maximal point on curve $p(\sin 3t,\varepsilon)$, with $a=0.8166,b=-4.106,c=20.44,d=136.9,e=-4.234,f=25.11,g=136.8$.
missing
Normalized solutions corresponding to $p(\cos 0t,\varepsilon)$, with $\varepsilon=0,1,2,3,4,5,10,20,40,80,160$.
missing
Normalized solutions corresponding to $p(\cos t,\varepsilon)$, with $\varepsilon=0,1,2,3,4,5,10$.
missing
Normalized solutions corresponding to $p(\cos t,\varepsilon)$, with $\varepsilon=10,20,40,80,160$.
missing
Normalized solutions corresponding to $p(\cos 2t,\varepsilon)$, with $\varepsilon=0,1,2,3,4,5,6$.
missing
Normalized solutions corresponding to $p(\cos 2t,\varepsilon)$, with $\varepsilon=6,7,8,9,10,20,30,40,60,80,100,160$.
missing
The $u$ coordinate of minimum points of solutions for points $p(\cos 0,\varepsilon)$, with $\varepsilon=0,1,\cdots, 200$. Fitting curve $u=\frac{a\varepsilon+b}{\varepsilon^2+c\varepsilon+d}$, with $a=-0.02171,b=0.2895,c=0.2289,d=0.2895$.
missing
The $t$ coordinate of minimum points of solutions for points $p(\cos t,\varepsilon)$, with $\varepsilon=2,\cdots, 200$. Fitting curve $y=\frac{a\varepsilon+b}{\varepsilon^2+c\varepsilon+d}$, with $a=241,9,b=1284,c=310.8,d=177.1$.
missing
The $u$ coordinate of minimum points of solutions for points $p(\cos t,\varepsilon)$, with $\varepsilon=0,1,2,\cdots, 200$. Fitting curve $u=\frac{a\varepsilon^2+b\varepsilon+c}{\varepsilon^2+d\varepsilon+e}$, with $a=0.8687,b=-1.631,c=0.8498,d=-1.72$ and $e=0.8497$.
missing
The $u$ coordinate of minimum points of solutions for points $p(\cos t,\varepsilon)$, with $\varepsilon=0,1,2,\cdots, 200$. Fitting curve $u=\frac{a\varepsilon+b}{\varepsilon^2+c\varepsilon+d}$, with $a=0.2495,b=-4.991,c=-3.037,d=6.722$.
missing
The $u$ coordinate of minimum points of solutions for points $p(\cos t,\varepsilon)$, with $\varepsilon=0,1,2,\cdots, 200$. Fitting curve $u=\frac{a\varepsilon+b}{\varepsilon^2+c\varepsilon+d}$, with $a=0.2495,b=-4.991,c=-3.037,d=6.722$.
missing
The $t$ coordinate of maximum points of solutions for points $p(\cos 2t,\varepsilon)$, with $\varepsilon=5,6,\cdots, 200$. Fitting curve $t=\frac{a\varepsilon^2+b\varepsilon+c}{\varepsilon^2+d\varepsilon+e}$, with $a=0.5572,b=88.5,c=-3.009,d=55.35$ and $e=-157.7$.
missing
The $t$ coordinate of the second peak of solutions for points $p(\cos 2t,\varepsilon)$, with $\varepsilon=5,6,\cdots, 200$. Fitting curve $t=\frac{a\varepsilon^2+b\varepsilon+c}{\varepsilon^3+d\varepsilon^2+e\varepsilon+f}$, with $a=269.3,b=4745,c=-9715,d=641.3,e=-2040$ and $f=-6017$.
missing
The $t$ coordinate of the second peak of solutions for points $p(\cos 2t,\varepsilon)$, with $\varepsilon=1,2,\cdots, 200$. Fitting curve $t=\frac{a\varepsilon^3+b\varepsilon^2+c\varepsilon+d}{\varepsilon^3+e\varepsilon^2+f\varepsilon+g}$, with $a=0.7931,b=-4.642,c=6.596,d=13.45,e=--5.508,f=9.829$ and $g=13.44$.
missing
The $t$ coordinate of the second peak of solutions for points $p(\cos 2t,\varepsilon)$, with $\varepsilon=1,2,\cdots, 200$. Fitting curve $y=\frac{a\varepsilon^2+b\varepsilon+c}{\varepsilon^2+e\varepsilon+f}$, with $a=-0.006875,b=0.7009,c=-8.537,d=-2.457,e=8.857$.
missing
The $t$ coordinate of the second peak of solutions for points $p(\cos 2t,\varepsilon)$, with $\varepsilon=5,6,\cdots, 200$. Fitting curve $y=\frac{a\varepsilon^2+b\varepsilon+c}{\varepsilon^3+d\varepsilon^2+e\varepsilon+f}$, with $a=0.2268,b=-25.1,c=587.7,d=4.775,e=-156$ and $f=1002$.
missing
Normalized solutions corresponding to $p(\sin \frac12t,\varepsilon)$, with $\varepsilon=0,1,2,3,4,5,10,20,40,80,160$.
missing
Normalized solutions corresponding to $p(\sin\frac32t,\varepsilon)$, with $\varepsilon=0,5,10,20,40,80,160$.
missing
Normalized solutions corresponding to $p(\cos \frac12t,\varepsilon)$, with $\varepsilon=0,1,2,3,4,5,10,20,40,80,160$.
missing
Normalized solutions corresponding to $p(\cos \frac32t,\varepsilon)$, with $\varepsilon=0,1,2,3,4,5,10,20,40,80,160$.