Topology and Geometric Group Theory Seminar
Tuesday, April 13, 2021 - 1:30pm
Via Zoom
Veering triangulations are a special class of ideal triangulations with a rather mysterious combinatorial definition. Their importance follows from a deep connection with pseudo-Anosov flows on 3-manifolds. Recently Landry, Minsky and Taylor introduced a polynomial invariant of veering triangulations called the taut polynomial. During the talk I will explain how and why it is connected to the Alexander polynomial of the underlying manifold.