Discrete Geometry and Combinatorics Seminar
Monday, October 25, 2021 - 2:30pm
Malott 206
Abstract: The study of log-concave inequalities for combinatorial objects have seen much progress in recent years. One such progress is the solution to the strongest form of Mason's conjecture (independently by Anari et. al. and Brándën-Huh) that the f-vectors of matroid independence complex is ultra-log-concave. In this talk, we discuss a new proof of this result through linear algebra, and discuss generalizations to greedoids and posets. This is a joint work with Igor Pak. This talk is aimed at a general audience.