Logic Seminar
We first prove a theorem about reals (subsets of N) and classes of reals: If a real X is Σ11 in every member G of a nonempty Σ11 class K of reals then X is itself Σ11. We also explore the relationship between this theorem, various basis results in hyperarithmetic theory and omitting types theorems in several generalized and modal logics. We then prove the analog of our first theorem for classes of reals: If a class A of reals is Σ11 in every member of a nonempty Σ11 class B of reals then A is itself Σ11.