Olivetti Club

Max LiptonCornell University
Plateau Problems with Mobius Boundary Energy

Tuesday, November 1, 2022 - 5:15pm
Malott 406

The classical Plateau problem is to find a surface with smallest surface area whose boundary is a given curve. The problem was resolved in the 1930s, and was the topic of the first Fields medal awarded to Jesse Douglas. Plateau problems seeking surfaces which minimize convex combinations of surface area and other quantities such as the elastic and Kirchhoff energies are of recent interest. In this talk, I will introduce the novel Mobius-Plateau energy from a paper co-authored with Gokul Nair and discuss its application to helicoidal strips.