Center for Applied Mathematics Colloquium

Dana YangCornell Statistics and Data Science
Learner-Private Convex Optimization

Friday, November 4, 2022 - 3:45pm
Rhodes 655

Convex optimization with feedback is a framework where a learner relies on iterative queries and feedback to arrive at the minimizer of a convex function. The paradigm has gained significant popularity recently thanks to its scalability in large-scale optimization and machine learning. The repeated interactions, however, expose the learner to privacy risks from eavesdropping adversaries that observe the submitted queries. In this work, we study how to optimally obfuscate the learner’s queries in convex optimization with first-order feedback, so that their learned optimal value is provably difficult to estimate for the eavesdropping adversary.